

Italy

CD Automation Srl Via Picasso, 34/36 20025 Legnano MI

Italy **T** +39 0331 577479

F +39 0331 579479

CD Automation Srl (Facility) 20023 Cantalupo Ml

India

M/s Toshcon CD Automation Pvt. Ltd. H1 - 75 Gegal Industrial Area Ajmer - 305023 India **T** +91 145 2787132/3/4/5 **T** +91 145 6450601/2/3

info@toshcon.com

EnglandCD Automation UK Ltd Unit 9 Harvington Business Park Brampton Road, East Sussex, BN22 9BN England T +44 1323 811100 F +44 1323 879012 info@cdautomation.co.uk www.cdautomation.co.uk

- RS485 Comm. STD
- key pad or RS485

Our facility in Legnano for thyristor unit production

CD Automation was founded in 1987 with the clear strategy of becoming a leading supplier of quality industrial automation products to the Italian market.

Key to this success was the formation of a sales team educated from a strong technical background.

The philosophy was simple; provide product & application experts able to work in partnership with the customer to find the right solution.

In 1990 CD Automation began its development of thyristor power controllers and quickly became the world wide market leader in using microprocessor based technology including RS485 communication.

 $\ensuremath{\mathsf{CD}}$ Automation now boasts the most comprehensive power control device range on the market today.

The extensive range is capable of accurately controlling a wide spectrum of electrical loads up to 3000 kW, from simple single-phase heaters up to complex high temperature-coefficient three-phase load.

Technical Service

CD Automation has invested heavily in computerised testing equipment & state-of-theart production equipment.

All products are individually testing including full functional, to improve quality and product reliability.

Our help desk service is available 10 hours per day with ex-stock delivery for spare parts. Remote service via Internet is also available for thyristor units with RS485 communications.

Our facility in Cantalupo for IGBT unit production and motor soft starters

Our facility in Ajmer, for production dedicated to India and fareast.

Our facility in East Sussex, England.

Index

Introduction	8
Revo Family Model	1:
Application Guide	1-
Feature Comparison	10
Sizes and Dimensions	18
Revo CL	2
Revo SSR - Revo SX	2
Revo S	2
Revo M	2
CD 3000E	3
Multidrive	3.
Revo TC	3
Revo PC	4
Diode Bridge	5.
SCR Bridge	5
Custom Family Model	5
Feature Comparison	5
Sizes and Dimensions	6
CD3200 - CD3000	6
Custom	6
Auxiliary Units	7
Fuse	7.
IGBT	7
Applications Software	8
Infrared Lamps - Touch Panel - Complex Heating - Glass - UV Lamps - Plastic	8.
Soft Starters	9.

Is it now time for innovation?

The industrial world has changed beyond recognition yet the temperature control zone has been left almost un-touched, using the same wiring and mounting methods for the controller, solid state relay, fuse & fuse holder, current transformer etc.

Our idea is bring the temperature control the 21st Century.

The new REVO is THE solution for today's modern industrial sector.

What REVO offers?

- Modularity of its components.
- Configurability that allows increased product performance.
- REVO's 'value-add' capable of saving 50% of labour and space.
- Innovation based on knowledge of process.
- International assistance from around the world via trained distributors and joint venture multi-national companies.
- Dynamic organization with total customer flexibility at the core of its philosophy.

REVO is a system not a simple product.

- Includes all key components of a typical temperature control zone.
- Modular system that is fully configurable satisifying the most complex applications.
- Wiring & mounting accessories included.
- Designed as a total block of automation.
- Touch panel or PC communications capability as standard.
- Multi power management (MPM) to reduce total peak current, optimising power factor & saving costs.

Why choose REVO?

We designed a superior product

of competitors working at 130°C with

SSR Input and ZC firing.

With the market place becoming more competitive we had a choice to make. Design a product a little cheaper but possibly not as good, or design a new innovative product where its added value is clear for all to see. We chose the latter, in line with our long-term philosophy.

No compromise

Heatsink and thyristor junctions generously sized to guarantee a long life for the thyristor unit

- Units working at low junction thyristor temperature with 20% margin on max temperature
- Strong connection design between the block terminal and thyristor semiconductor connection allows for generous sizing
- All the copper connections treated against oxidation
- Rugged construction for electronic and plastic parts
- Protection against over voltage

Have a closer look

Open a CD Automation thyristor unit and any of our competitors, you will discover the difference and see why we can offer a longer life warranty (see below tab).

Estimated Powercycles of AL wire bonded dies

	dΤ	Tj max \°C 100°C	110°C	120°C	130°C	140°C
Tj start \°C	80°C	248.000				
	70°C	320.200	110.000			
	60°C	464.000	145.500	51.100		
	50°C	782.000	216.000	69.100	24.800	
	40°C	1.600.000	372.000	105.000	34.100	12.500
SSR	30°C	4.800.000	793.000	184.000	52.500	17.500
Single Cycle	20°C	25.400.000	2.400.000	400.000	94.000	27.500
			12.800.000	1.200.000	209.000	50.000
				6.700.000	645.000	112.000
					3.600.000	353.000
						2.000.000
		CD Automation	CD Automation			COMPETITORS
		CD predicted life	CD predicted life whith			Predicted life of majority

Save space = Save money

An innovative process solution that will dramatically save wiring & labour

With a reduction of 50% space, it's easy to save hundreds off the cabinet price.

Left Side (Traditional)

Mounted on the baseplate are a Fuse & Fuseholder, 40A Solid State Relay and a Current Transformer.

Right Side (Innovative)

Mounted on the same baseplate are two Relay 40A units, each having the same components as the traditional unit. This simple example demonstrates a 50% saving of panel space.

The new Revo S family

Can be put together with little technical knowledge

- SSR Solid State Relay with Zero Crossing
- SSR Solid State Relay + Fuse & Fuse Holder
- SSR Solid State Relay + Fuse & Fuse Holder + Current Transformer
- · Different versions with or without heatsink
- Single and three phase thyristor units

The new Revo M = Revo S + Drive M

The addition of Drive M transforms a simple unit into a sophisticated unit capable of the following additional features

- Universal inputs accepting all standard signals
- Universal firing including Zero Crossing, Burst Firing
- Single Cycle, Delayed Triggering and Phase Angle
- Universal Feed Back (Voltage, Current and Power)
- RS485 Communication standard field bus available as options

OPTIONS

- Heater Break Alarm for partial or total load failure
- Thyristor short circuit failure

Key benefits include:

- Space reduction of 50%, labour reduction of 1 hour per control zone, high reliability
- If one zone fails a non-technical user can substitute a second within

working in Single Cycle. SSR Input and ZC Firing.

one or

Glossary

Zero Crossing ZC

ZC firing mode is used with the logic output from a temperature controller and so the thyristor operates like a contactor.

The cycle time is performed by the temperature controller.

Zero Crossing minimizes interferences as the thyristor unit switches ON-OFF at zero voltage.

Burst Firing BF

This firing is performed digitally within the thyristor unit at zero volts, producing no EMC interference. Analogue input is necessary for BF and the number of complete cycles must be specified for 50% power demand. This value can be between 1 and 255 complete cycles, determining the speed of firing. When 1 is specified, the firing mode becomes Single Cycle (SC).

Soft Start + Burst Firing now availabe as an option.

Single Cycle SC

SC is the fastest zero crossing switching method. At 50% input signal, one cycle is ON and one cycle is OFF. At 75%, 3 cycles are ON and one cycle is OFF. If power demand is 76% the unit performs the same as for 75% but every time the unit switches ON the microprocessor divides 76/75 and memorises the ratio. When the sum is one the unit delivers one cycle more to the load. With this firing it is necessary to have analogue input.

Delayed Triggering DT

Used to switch the primary coil of transformers when coupled with normal resistive loads (not cold resistance) on the secondary, DT prevents the inrush current when zero voltage (ON-OFF) is used to switch the primary. The thyristor unit switches OFF when the load voltage is negative and switches ON only when positive with a pre-set delay for the first half cycle.

Phase Angle PA

PA controls the power to the load by allowing the thyristor to conduct for part of the AC supply cycle only. The more power required, the more the conduction angle is advanced until virtually the whole cycle is conducting for 100% power. The load power can be adjusted from 0 to 100% as a function of the analogue input signal, normally determined by a temperature controller or potentiometer, PA is normally used with inductive loads.

Feedback/Control Mode

Supply voltage fluctuations changes the power to the load. To overcome this effect the voltage supplied to the load is measured and compared with the power demand from the controller. The error signal is used to automatically hold the power at the value requested.

Three types of control mode are available:

- Voltage Control Mode, where the input signal is proportional to the voltage output (voltage f/b).
- Current Control Mode, where the input signal is proportional to the current output (current f/b). Power Control Mode, where the input signal is proportional to the power output (power f/b).
- As an option it is possible to transfer control mode from voltage to power via a simple digital command.

What our customers want?

They want a positive experience with our total solution, not just a cheap price!

Knowledgeable Sales Team

We have a team of sales engineers focused on core business products only. An expert at no cost, not an engineer with a big catalogue and little product knowledge, will welcome customers. Easy access to engineers when you need a special performance project.

Fast Service

Excellent pre sales and after sales service including engineering support.

Easy to do business with us

Fast reaction to your enquiry, short lead times, timely production of order acknowledgement, invoices etc.

Catalogues & manuals of all our products plus configuration software, available free of charge from our web-site.

Our people are always welcoming to our customers.

Digital Documentation on www.cdautomation.com

- Bulletins
- Manuals
- Applications
- Help desk

Guide to family model as function of price

For more details on Thyristor Unit go to page 10 - 11

	Euro I
	700
nnit	600
ohase	500
ce 1	400
ge pri	300
Avarange price 1 phase unit	200
¥	100
	0
	Read S 1PH PH Read CL

MODEL	. INPUT	FIRING	CURRENT LIMIT	COMMU_ NICATION	CONTROL MODE	MAX VOLTAGE	MAX CURRENT	MAIN OPTION
REVO S 1PH	SSR ANALOG	0-CROSSING BURST-FIRING	NO	NO	NO	600V	700A	HB ALARM ANALOG
REVO M 1PH	SSR ANALOG RS485	0-CROSSING BURST-FIRING PHASE ANGLE	NO	YES	V, I, Vxl	600V	700A	HB ALARM ANALOG Std
REVO CL	SSR ANALOG RS485	0-CROSSING BURST-FIRING PHASE ANGLE	YES	YES	V, I, Vxl	600V	700A	HB ALARM ANALOG Std

MODEL	INPUT	FIRING	CURRENT LIMIT	COMMU_ NICATION	CONTROL MODE	MAX VOLTAGE	MAX CURRENT	MAIN OPTION
CUSTOM 2PH	SSR ANALOG	0-CROSSING BURST-FIRING	NO	NO	NO	690V	2400A	HB ALARM ANALOG
REVO S 2PH	SSR ANALOG	0-CROSSING BURST-FIRING	NO	NO	NO	600V	700A	HB ALARM ANALOG
REVO M 2PH	SSR ANALOG RS485	0-CROSSING BURST-FIRING	NO	YES	V, I, Vxl	600V	700A	HB ALARM ANALOG Std
REVO E 2PH MULTIDRIVE 2PH	SSR ANALOG RS485	0-CROSSING BURST-FIRING DELAYED TRIGGERING	NO	YES	V, I, Vxl	600V 690V	700A 2400A	HB ALARM ANALOG Std

MODEL	INPUT	FIRING	CURRENT LIMIT	COMMU_ NICATION	CONTROL MODE	MAX VOLTAGE	MAX CURRENT	MAIN OPTION
CUSTOM 3PH	SSR ANALOG	o-CROSSING BURST-FIRING	NO	NO	NO	690V	2400A	HB ALARM ANALOG
REVO S 3PH	SSR ANALOG	0-CROSSING BURST-FIRING	NO	NO	NO	600V	500A	HB ALARM ANALOG
REVOO M 3PH	SSR ANALOG RS485	0-CROSSING BURST-FIRING	NO	YES	V, I, Vxl	600V	500A	HB ALARM ANALOG Std
REVO E 3PH MULTIDRIVE 2PH	SSR ANALOG RS485	0-CROSSING BURST-FIRING PHASE ANGLE DELAYED TRIGGERING	YES	YES	V, I, Vxl	600V 690V	700A 2400A	HB ALARM ANALOG Std

Note: On graphic above it's possible to see the comparison in term of prices between the different families and the different models. As a reference has been taken the price of Revo S 1PH and we have assigned to it a conventional value of 100 al the other prices are multiple of it and value of a model is the average value of different current rating. HB Alarm for partial or total load failure.

REVO family model from 30 to 2400A

Custom family model from 10 to 2400A

86450

Application guide for Thyristor unit selection

APPLICATION GUIDE	LOAD TYPE	MODEL	CURRENT RANGE	N. OF UNITS	PHASE CTRL
		Revo SSR	It depends on heat sink	1	1
	Normal resistance infrared medium and long waveform	Revo S 1PH	30-700A	1	1
		Custom 1PH	300-2400A	1	1
(v		Revo M 1PH	35-700A	1	1
<u>\</u>	Quartz lamp infrared waveform	Revo CL	35-700A	1	1
	Molibdenum, Tungstenum, Superkanthal, Platinum,	Revo CL	35-700A	1	1
(v	CII	Revo M 1PH	35-700A	1	1
	Silicon carbide elements	Revo CL	35-700A	1	1
	Transformers coupled with normal resistance	Revo M 1PH	35-700A	1	1
v III	Transformers coupled with cold resistances (kanthal super)	Revo CL	35-700A	1	1
	Normal Resistance	Revo S 2PH	30-700A	1	2
		Revo M 2PH Multidrive 2PH	30-700A 1000-2400	1	2
		Revo S 3PH	30-500A	1	3
	Normal Resistance	Revo M 3PH	30-500A	1	3
		Custom 3PH	150-2400A	2-3	3
1		CD 3000E 3PH Multidrive 3PH	35-500A 35-2400A	1	3
	Silicon carbide elements	Revo M 3PH	30-500A	1	3
	Molibdenum, Tungstenum Super Kantal	CD3000E 3PH	35-500A	1	3
	Platinum, Quartz lamp infrared short waveform	Multidrive 3PH	25-2400A	1	3
Spinose Spinos	Three phase transformer	CD3000E 3PH	25-500A	1	3
		Multidrive 3PH	25-2400A	1	3
<u> </u>	Three phase normal load resistance	Revo S 3PH	30-500A	1	3
	with open delta connection	Revo M 3PH	30-500A	1	3
(v		Custom 3PH	150-2400A	1	3
	Cold resistance	Revo CL	30-700A	3	3
0		CD3000E Multidrive 3PH	35-500A 35-2400A	1	3

	FOR YOUR APPLICATIONS			ONS	(OTHE	R FEAT	TURES	S	IZING	NOTE
ZC	SC	BF	BF Simply	S+BF	DT	PA	CL	Control	V	I	
•											
•			•								
									.,	Р	For general resistance applications with low variations in temperature and age.
•			•					10	V	<u>P</u> V	For low inertia loads use Single Cycle (SC)
	•	•				•		V ²		0 0 0 0 0 0 0	or Phase Angle (PA).
						•		VxI			
						•	•	l ²	V	<u>P</u> V	These resistances change with temperature but have low variations with age. Starting current with cold elements can be times nominal current (superkanthal). Infrared lamp short waveform can reach 8 time nominal current
		•						V			These resistances change value with temperature and age and
						•		to Vxl	V	<u>P</u> V	value at the end of element life is 4 times the initial value. Constant power regulation is necessary with V to Vxl Transfer.
					•			Vxl	V	P Vcoø	Transformers and inductors have inrush current on start up. Phase Angle plus Soft Start and current limit are required. To switch the transformer ON-OFF, use DT firing that will automatically switch ON-OFF when current value is at zero.
						•	•	 2	V	P Vcoø	Use Phase Angle + Current Limit
•			•						V	P 1.73V	Revo M 2PH is suitable to control resistive loads
		•						Vxl	V	P 1.73V	with delta or star connection without neutral.
•		•	•					VxI	V 1.73	P 1.73V	Three phase load with star plus neutral connection must be controlled on the three phases.
		•				•		V to Vxl	V	P	On three phase silicon carbide elements VxI feedback is suggested to have a constant power control. This is necessary to compensate resistance change with temperature and age. Resistance value at the end of element life is 4 times the original value. With Revo M use BF firing and Power Limit.
						•	•	Į2		1.73V	These resistances change with temperature but have low variations with age. Start up current with cold elements can be
				-		•	•	l ²			many times the nominal current value. In this caseit is necessar to use Phase Angle + Current Limit.
						•	•	l ²	V	P	Three phase Multidrive and CD3000E are specially designed to drive three phase transformers coupled
						•	•	l ²	v	1.73Vcoø	on secondary with normal or special resistive loads.
•			•								
		•						Vxl	V	<u>P</u> 3V	
•			•							J.	Open delta can be driven by three phase unit.
						•	•	[2	V	P 3V	and consistent by and production
	_	_		-	-	-		-	-	. J.	

 $\begin{tabular}{ll} \textbf{CONTROL MODE:} & V = Voltage \ feedback & V^2 = Square \ voltage \ feedback & Vxl = Power \ feedback & I = Current \ feedback \\ \end{tabular}$

REVO feature comparison

	Description	Revo CL	Revo SSR	Revo S 1PH	Revo S 2PH	Revo S 3PH
	CODE	RCL	SSR	RS1	RS2	RS3
	Max voltage 480V	·	•	•	•	•
	Max voltage 600V	•	•	•	•	•
LOAD TYPE	Max voltage 690V	•>280A		•>280A	•>280A	•> 225A
9	Single phase	•	•	•		
9	3 phase load star no neutral or delta				•	•
	3 phase load star with neutral	_				•
	3 phase load open delta SSR 4:30VDC	•	•	•	•	•
<u> </u>	4:20 mA		0	0	0	0
E	0:10 Vdc	•	0	0	0	0
INPUT TYPE	10K potentiometer	•				
	Communication command	•				
	Zero crossing		•	•	•	•
	Single cycle			0 (7)	0 (=)	0 (=)
S	Burst firing Soft start + burst firing			0 (3)	0 (3)	0 (3)
FIRING	Phase angle	•				
	Soft start + phase angle					
	Delayed triggering + burst firing	•				
DE	Voltage	•				
MODE	Square Current	•				
=	Current	•				
CONTROL	Voltage X current (power)	•				
NO.	Voltage to power transfer External control mode	•				
	Internal current limit	• (1)				
z	Heater break + thyristor short circuit	0	0	0	0	0
OPTION	Integrated fixed fuses	•>40A		•>40A	•>40A	•>40A
9	Fuse & fuse holder	≤40A	≤40A	≤40A	≤40A	≤40A
	Flat wiring terminal		O (2)	O (2)	O (2)	0 (2)
	RS485 with modbus protocol	•				
Ĕ	Profibus DP, ethernet	0				
сомм.	Frontal key pad PC programmable + USB\TTL conv.	•				
	Easy Download	<u> </u>				
0	Analogue input/output (4)	1/1				
<u>%</u>	Digital input/output	2/1				
	CURRENT	SIZE	SIZE	SIZE	SIZE	SIZE
	30		SR0.SR1	SR3.SR6	SR4.SR7	SR5.SR8
	35	SR9		SR3.SR6	SR4.SR7	SR5.SR8
	40	SR9		SR3.SR6	SR4.SR7	SR5.SR8
	45 60	SR12		SR12	SR15	SR16
	75	JKTZ		JIVIZ	31/13	31(10
	90	SR12		SR12	SR15	SR16
	100					
	120	SR15		SR15	SR16	SR17
	125					
	150	SR15		SR15	SR16	SR17
	180	SR15		SR15	SR16	SR17
Þ	210	SR15		SR15	SR16	SR17
CURRENT	225	31(13		51(15	51(10	S13
ä	280	S9		S9	S10	
_	300					S14
	350					S14
	400	S12		S12	S14	S14
	450	612		C12	S14 S14	S14
	500 600	S12 S12		S12 S12	S14 S14	S14
	700	\$12 \$12		S12	\$14 \$14	
	850	3.2				
	1100					
	1400					
	1700					
	1700 1900					
	1700					

Revo M 1PH	Revo M 2PH	Revo M 3PH	CD3000E 2PH	CD3000E 3PH	Multidrive 1PH	Multidrive 2PH	Multidrive 3PH	
RM1	RM2	RM3	RE2	RE3	M1	M2	M3	
•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	
• ≥400A	• ≥400A	•>250A			•	•	•	
•					•			
	•	•	•	•		•	•	
		•		•			•	
		•		•			•	_
•	•	•	•	•	•	•	•	_
•	•	•	•	•	•	•	•	-
•	•	•	•	•	•	•	•	_
•	•	•	•	•	•	•	•	-
		•	•	•	•	•		
•					•			
•	•	•	•	•	•	•	•	
•		-		•	•		•	
•				•	•		•	
•				•	•		•	
•			•	•	•	•	•	
•	•	•	•	•	•	•	•	
•	•	•						
•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	_
•	•	•	•	•	•	•	•	
•					•	•	•	_
			_	• (1)	• (1)	_	• (1)	_
0	0	0	•	•	•	•	•	-
● >40A ≤40A	• >40A ≤40A	● >40A ≤40A	•	•	•	•	•	-
340A	240A	240A						-
•	•	•	•	•	•	•	•	-
0	0	0	0	0	0	0	0	-
•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	
			•	•	•	•	•	
0/1	0/1	0/1	0/1	1/1	2/4	2/4	2/4	
2/1	2/1	2/1	4/3	4/3	6/4	6/4	6/4	
SIZE	SIZE	SIZE	SIZE	SIZE	SIZE	SIZE	SIZE	CUR
	SR10	SR11						3
SR9	SR10	SR11	S9	S9		S13	S13	3
SR9	SR10	SR11						4
			S9	S9		S13	S13	4
SR12	SR13	SR16						6
			S9	S9		S13	S13	7
SR12	SR13	SR16	60			617	617	9
CD1F	CD1C	CD17	S9	S11		S13	S13	10
SR15	SR16	SR17	S9	S11		S13	S13	1.
SR15	SR16	SR17	S9	S11		\$13	S13	15
SR15	SR16	SR17	39	311		313	313	13
31(13	31(10	31(17	S9					20
SR15	SR16	SR17	33					2
		S13		S13		S13	S13	2:
S9	S10		S14			S14		2
		S14		S14			S14	30
		S14	S14	S14			S14	3.5
			S14	S14		S14	S14	40
S12	S14	S14	314			614		41
S12	S14 S14	\$14 \$14	S14	S14		S14	S14	43
S12	S14 S14		S14 S14	S14 S14		S14	\$14 \$14	50
S12 S12	S14 S14 S14	S14	\$14 \$14 \$14			S14 S14	-	50
S12	S14 S14	S14	S14 S14			S14 S14 S14	S14	50 60 70
S12 S12	S14 S14 S14	S14	\$14 \$14 \$14		\$14	\$14 \$14 \$14 \$14	\$14 \$14 \$15	50 60 70 8!
S12 S12	S14 S14 S14	S14	\$14 \$14 \$14		SR18	\$14 \$14 \$14 \$14 \$R19	\$14 \$14 \$15 \$R20	50 60 70 8!
S12 S12	S14 S14 S14	S14	\$14 \$14 \$14		SR18 SR18	\$14 \$14 \$14 \$14 \$14 \$R19 \$R19	\$14 \$14 \$15 \$15 \$R20 \$R20	50 60 70 8! 11
S12 S12	S14 S14 S14	S14	\$14 \$14 \$14		SR18 SR18 SR21	\$14 \$14 \$14 \$14 \$14 \$R19 \$R19 \$R22	\$14 \$14 \$15 \$15 \$R20 \$R20 \$R23	50 60 70 85 11 14
\$12 \$12	S14 S14 S14	S14	\$14 \$14 \$14		SR18 SR18 SR21 SR21	\$14 \$14 \$14 \$14 \$R19 \$R19 \$R22 \$R22	\$14 \$14 \$15 \$15 \$R20 \$R20 \$R23 \$R23	50 60 70 85 110 140 170
\$12 \$12	S14 S14 S14	S14	\$14 \$14 \$14		SR18 SR18 SR21	\$14 \$14 \$14 \$14 \$14 \$R19 \$R19 \$R22	\$14 \$14 \$15 \$15 \$R20 \$R20 \$R23	45 50 60 70 85 110 140 170 210 270

• Standard ○ Option (1) Phase Angle only (2) Flat wiring available as option ≤ 40A (3) 4-8-16 Cycles Simplified Burst Firing available with Analog Input only (4) Main Analog Input not included

For CD 3000 and Custom Family see pages 38-39

Size and dimensions of REVO family

SRO H 97 x W 36 x D 32 - 0,12kg.

SR1 H 97 x W 36 x D 92 - 0,29kg.

SR2 H 121 x W 36 x D 87 - 0,27kg.

SR3 H 121 x W 36 x D 125 - 0,44kg.

SR4 H 121 x W 72 x D 125 - 0,88kg.

SR5 H 121 x W 108 x D 125 - 1,32kg.

SR6 H 121 x W 36 x D 185 - 0,61kg.

SR7 H 121 x W 72 x D 185 - 1,22kg.

SR8 H 121 x W 108 x D 185 - 1,83kg.

SR9 H 121 x W 72 x D 185 - 1,15kg.

SR10 H 121 x W 108 x D 185 - 1,76kg.

SR11 H 121 x W 144 x D 185 - 2,4kg.

SR12 H 269 x W 93 x D 170 - 3,4kg.

SR13 H 269 x W 186 x D 170 - 6,8kg.

SR14 H 269 x W 279 x D 170 - 10,2kg.

SR15 H 273 x W 93 x D 170 - 3,6kg.

SR16 H 273 x W 186 x D 170 - 7kg.

SR17 H 273 x W 279 x D 170 - 10,6kg.

S9 H 350 x W 116 x D 244 - 5,1kg

\$10 H 350 x W 240 x D 244 - 11kg.

S11 H 440 x W 137x D 270 - 10,5kg.

S12 H 520 x W 137 x D 270 - 15kg.

\$13/\$14 H 440/520 x W 262 x D 270 - 18kg.

\$15 H 520 x W 400 x D 270 - 43kg.

SR18 H 550 x W 329 x D 347 - 27kg.

SR19 H 550 x W 523 x D 347 - 49kg.

SR20 H 550 x W 717 x D 347 - 72kg.

SR21 H 640 x W 329 x D 347 - 32/40kg.

SR22 H 640 x W 523 x D 347 - 59/75kg.

SR23 H 640 x W 717 x D 347 - 86/110kg.

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared long, short and medium waveform, Silicon Carbide, cold resistance coupled with transformer
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Burst Firing, Single Cycle, Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI Power and current I and I²
- RS485 port. RTU Modbus Protocol
- Comply with EMC
- Data sheet: More details on "Revo CL" bulletin

Option

- · Heater break alarm
- Configuration software code: CCA (cable + converter + configuration software)

	1 1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	Note
ORDERING CODE	R	С	L	_	_	_	-	_	_	_	_	_	_	_	_	_	-
CURRENT				4 5	6		CONTR	OL MODE								11	
description				code	n	ote	descript	ion								No	
35A				0 3	5		Open Lo	оор									
40A				0 4	0		Voltage	Feed Bac	k V							U	
60A				0 6	0		Power F	eed Back	VxI							W	
90A				0 9	0		Voltage	Square V	2							Q	
120A				1 2	0		Current	Feed Bac	k I							I	
150A				1 5	0												
180A				1 8	0		FUSES	& OPTIO	N							12	
210A				2 1	0		descript	ion								code	No
280A				2 8	0		For Units =< 40A Fuse + Fuse Holder + CT Standard										
400A				4 0	0		Fuse +	Fuse Hold	ler + CT ·	+ HB with	screw Te	rminal				Н	
500A				5 0	0		For Unit	ts > 40A F	ixed Fuse	e + CT						Υ	
600A				6 0	0		Fixed F	use + CT	+ HB							Н	
700A				7 0	0												
							FAN VO	DLTAGE								13	
MAX VOLTAGE				7			descript	ion								code	N
description	1						No Fan	< 120A								0	
480 V							Fan 110)V >= 120	A							1	
600 V							Fan 220V >= 120A Std Version									2	
690V Available on units > 280A				7													
							APPRO									14	
VOLTAGE SUPPLY AUX.				8			descript									code	N
description				code		ote	CE EM	C For Euro	pean Ma	arket						0	
90:130V				1		3											
170:265V				2		3	MANUA									15	
230:345V				3		3	descript	ion								code	N
300:530V				5		3	None									0	
510:690V				6		3	Italian									1	
600:760V				7		3	English									2	
							German	1								3	
NPUT				9			French									4	
description				code	n	ote											
0:10V dc				V			VERSIO									16	
4:20 mA				Α			description Std with fuse + fuse holder up to 40A									code	No
10 K Pot				K												1	
RS 485				R				fuse norn								2	4
							Second fu	use with an a	additional s	afety elettro	mechanicha	al relay to o	pen in alarr	m conditions	\$	3	
FIRING				10			Note (1)	Fuse & fuse	holdor	included.	c Ctd up to	. 40A E	d fuene f	all other	ting		
description				code	n	ote		ruse & tuse After 16th d									
Delayed Triggering + Burst Firing DT+BF (8 cy	ycles at 50% po	ower dema	ınd)	D				Load voltag							,ov)		
Phase Angle PA				Р				This option							same ratir	ισ	
Soft Start + Phase Angle S+PA				F			.4010 (4)	opdott	- POSSIDIE	····uri unit t	P 10 7017. L		cquai neve	2 141 ZI I I UI	Same idul	ρ.	

Thyristor unit connected with Transformers

Revo CL has been specifically designed to drive transformers and has all the drive capability & techniques required, configurable from the front panel display.

Close examination of the transformer application needs to be made as the typical inrush current, when switched on. This over-current will have the result of fuse or thyristor failure.

To avoid this peak current two techniques can be used:

- Phase angle firing with soft start and current limit. This type of firing can be used with all types of loads.
- Normal resistance
- Cold resistance (Example: Kanthall Super elements)
- Transformer coupled with normal or cold resistance
- Burst firing using the Delay Triggering (DT) technique. To avoid magnetic circuit saturation, the thyristor unit will switch OFF when the load voltage is negative and switch ON again when positive. The unit also has an adjustable delay on voltage zero crossing. In this way it is possible to switch ON when current is zero. This Firing technique can only be used with normal resistance, where its resistive value remains constant with temperature variations.

The BIG advantage with Revo CL

Buy one unit and you remove all application risks, selecting Phase Angle or Delayed Triggering as required via frontal Key Pad.

Technical Specification

- Dimensions: SR0, SR1, (see page18)Load type: Normal resistance, infrared long and medium waveform
- Firing mode: Zero Crossing
- Operating temperature: See graph on right page
 Comply with EMC
- Data sheet: More details on "Revo SSR" Bulletin

Total load faillure without latching

All options below are available with fuse + fuse holder only

- Current Transformer
- Current Transformer + HB (heater break)
- Current Transformer + HB (heater break) + flat wiring system

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16	
ORDERING CODE	S	S	R	_	_	_	-	_	_	_	-	_	_	_	_	_	-	
CURRENT				4 5	6		FUSES		12									
description				code	n	ote	description									code		
62A				0 6	2		No Fuse									0		
74A				0 7	4		Fuse + Fuse Holder									F		
90A				0 9	0		Fuse + Fuse Holder + CT									Υ		
					Fuse + Fuse Holder + CT + HB											Н	2	
MAX VOLTAGE				7				use Hold		HB + FI	at Cable					X	2	
description				code	n	ote	Total Lo	ad Faillur	е							N		
480V				4											_			
600V		6			FAN VOLTAGE								13					
							descript	ion								code	Note	
VOLTAGE SUPPLY AUX.				8	_		No Fan									0		
description				code	n	ote	40000											
Without HB no auxiliary voltage supply				0			APPROVALS									14		
With HB 12:24V ac-dc opt. Available only with fuse	+ tuse n	iolder		4		1	description CE EMC For European Market									code	Note	
INPUT				9			CE EMC	For Euro	pean ivia	rket						0		
description				code		ote	MANUA									15		
SSR				S	- 11	ole	descripti									code	Note	
SSK				3			None	IUII								0	Note	
FIRING				10			Italian									1		
description				code	n	ote	English									2		
ZC Zero Crossing				Z		Oic	German									3		
Random				R			French									4		
							511011											
CONTROL MODE				11			VERSIO	N								16		
description		code	n	ote	descripti	ion								code	Note			
Open Loop		0			Std vers	ion								1				
Nate (1) Amilian mileas and house and admirab LID assista	N. 1 - (2)																	

REVO SSR Analog

Technical Specification

- **Dimensions:** SR1 (see page18)
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: 0:10V; 4-20mA SSR
- Firing mode: Zero Crossing
- Operating temperature: See graph on right page
- Comply with EMC
- Data sheet: More details on "Revo SSR Analog" Bulletin

All options below are available with fuse + fuse holder only

- Current Transformer
- Current Transformer + HB (heater break)

SIZE SR1								• Curre	ent Trar	sforme	r + HB	(heate	r break)) + flat	wiring s	ystem		
	1	2	3	4		5	6		7	8	9	10	11	12	13	14	15	10
ORDERING CODE (Note3)	S	S	R	_		_	-	-	_	-	-	_	_	_	-	-	_	_
CURRENT				4	5	6			OL MOD	E							11	
description					ode		ote	descript									code	no
62A						2		Open Lo	оор								0	
74A						4												
90A				0	9	0			& OPTIO	N							12	
								descript									code	No
MAX VOLTAGE					7				Fuse Hold								F	
description				0	ode	n	ote		Fuse Hold								Υ	
480V					4				Fuse Hold								Н	2
600V					6			Fuse +	Fuse Hold	der + CT	+ HB + F	lat Cable					Х	2
VOLTAGE SUPPLY AUX.					8			FAN VO	DLTAGE								13	
description				0	ode	n	ote	descript	tion								code	No
12:24V ac-dc					4			No Fan									0	
INPUT					9			APPRO	VALS								14	
description					ode	n	ote	descript									code	No
0:10V Analog Input					V		2		C For Eur	opean Ma	arket						0	- 110
4:20 mA Analog Input					A		2			- p								
								MANUA	AL.								15	
FIRING					10			descript	tion								code	No
description				C	ode	n	ote	None									0	
Burst Firing 4 Cycles on at 50% Power Deman	d				4			Italian									1	_
Burst Firing 8 Cycles on at 50% Power Deman					8			English									2	_
Burst Firing 16 Cycles on at 50% Power Dema					6			German									3	
lote (2) Option available only with fuse + fuse holder								French									4	
lote (3) All the Revo Analog version have fuse + fuse h	nolder							VERSIO	DM .								16	
								descript									code	No
								Std vers										NO
								Std vers	SION								1	

Current sizing for REVO SSR/SSR Analog

RO62 MODULE Power Dissipation versus on state Current and ambient Temperature

RO74 MODULE Power Dissipation versus on state Current and ambient Temperature

RO90 MODULE Power Dissipation versus on state Current and ambient Temperature

Specification

- ${\color{red} \bullet}$ This unit is available in three version as is drawing below
- Each unit includes Fuse and Fuse Holder, thyristor and heat sink with its own Firing circuit
- Zero Crossing Firing
- Insulated input
- LED for On Off Status indication
- LED for fuse failure indication
- Plug in connection for auxiliary and power terminations
- Small dimensions Width: 36 Depth: 86 Height:121
- Din rail mounting or screw mounting
- Can be used in applications with many zones and low power as thermoforming, blow Moulding and Hot Runners

SIZE SR2 - 230V / 480V

称称称称

8 7 8 5 4 3 2 1 9 9 9 9 9 9 9 9

Diagram of control connection 4x3,5A

Diagram of control connection 3x4,5A

Diagram of control connection 2x7A

1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE R	S	Х	_	_	_	-	_	_	_	_	_	_	_	_	_	_
NUMBER OF ZONES X CURRENT RATING			4 5	6		FUSES	& OPTIO	N							12	
description			code	е	note	descrip	tion								code	Note
4 zones 3,5A each			4 0	3		Fuse +	Fuse Hold	der							F	
3 zones 4,5A each			3 0	4		Total Lo	ad Faillur	e with Lat	tching						L	1
2 zones 7A each			2 0	7												
						FAN VO	DLTAGE								13	
MAX VOLTAGE			7			descrip									code	Note
description			cod	е	note	No Fan	Voltage								0	
230 V			2													
480 V			4		2	APPRO									14	
						descrip									code	Note
VOLTAGE SUPPLY AUX.			8			CE EM	C For Euro	opean Ma	arket						0	
description			cod	е	note											
No auxiliary voltage with 230V			0			MANUA									15	
12-24V ac-dc with 480V			4			descrip	tion								code	Note
						None									0	
INPUT			9			Italian									1	
description			code	е	note	English									2	
SSR			S			German	1								3	
						French									4	
FIRING			10													
description			code	е	note	VERSI									16	
Zero Crossing			Z			descrip									code	Note
Random (used with Revo-PC)			R			Version	1								1	
CONTROL MODE			11				This option									
description			code	е	note	Note (2)	The 480V v	ersion hav	e dimensi	on W=48 H	1121 D=8	16				
Open Loop			0													

REVO S 1PH

Technical Specification

- **Dimensions:** See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only Operating temperature: 0 to 40°C without derating
 Comply with EMC
- Data sheet: More details on "Revo S 1PH" bulletin

Option

- Analog input: 4/20 mA or 0/10V
- Heather Break Alarm + Current Transformer
- Current Transformer only mounted inside

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	R	S	1	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		FIRING				· 		· 			10	
lescription				code	no	ote	descript	on								code	No
0A				0 3	0			Crossin	0							Z	
35A				0 3	5					50% Po	wer Dema	and				4	
10A				0 4	0						wer Dema					8	
60A				0 6	0						ower Den					6	
90A				0 9	0			J									_
120A				1 2	0		CONTR	OL MODI	E							11	
150A				1 5	0		descript									code	No
180A				1 8	0		Open Lo									0	
210A				2 1	0		O POIT EX	ю									_
280A				2 8	0		FUSES	& OPTIO	N							12	
400A				4 0	0		descript									code	No
500A				5 0	0			for all Ur	nits =< 40	Α						0	_
600A				6 0	0			use Hold								F	_
700A				7 0	0			use Holo								Υ Υ	+
					Ü			use Holo		- HR						H	+
MAX VOLTAGE				7							flat cable	connecti	ion			X	_
description				code	no	ote		ises Std f								F	
480V				4				ises Std -								Y	_
600V				6			Fixed Fu	ises Std -	+ CT + H	3						Н	_
690V				7	-	7											_
							FAN VO	LTAGE								13	
OLTAGE SUPPLY AUX.				8			descript	on								code	No
description				code	no	ote	No Fan									0	
No Aux. Voltage without HB and/or Analog Input up	p to 210A	included		0				V >= 120	A							1	
With HB and/or Analog Input on all unit =<210A Au				4			Fan 220	V >= 120	A Std Ver	sion						2	
For all Units > 210A with whichever options and in																	
90:130V				1		5	APPRO	VALS								14	
170:265V				2		5	descript	on								code	No
230:345V				3		5		For Euro	ppean Ma	rket						0	
300:530V				5		5											
510:690V				6		5	MANUA	L								15	
600:760V				7		5	descript	on								code	No
							None									0	
NPUT				9			Italian									1	
description				code	no	ote	English									2	_
SSR				S			German									3	_
0:10V dc				V			French									4	_
4:20mA				Α													
ote (1) If you need one Revo S 1PH with 2 Fuse & Fuse I-	Holder. For	dimensions	see Revo				VERSIC									16	
This solution can be used up to 40A max.							descript									code	No
ote (2) If you need one Revo S 1PH with 2 Fuse & Fuse F	Holder + sa	fety relay. I	or dimens	sions see Re	vo S 2PH.			with one								1	
This solution can be used up to 40A max.		. ,						th 2 Fuse			40A safety rela					3	

REVO S 2PH

Technical Specification

- **Dimensions:** See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
 Operating temperature: 0 to 40°C without derating
- Comply with EMC
- Data sheet: More details on "Revo S 2PH" bulletin

Option

- Analog input: 4/20 mA or 0/10V
- Current Transformer only mounted inside
- Current Transformer + HB Alarm

	1	2	3	4		5	6		7	8	9	10	11	12	13	14	15	10
ORDERING CODE	R	S	2	_		_	_	-	_	_	_	_	_	_	_	_	_	-
CURRENT				4	5	6		FIRING									10	
lescription					ode	n	ote	descript	ion								code	N
80A				0	3	0		ZC Zero	Crossin	g							Z	
85A				0	3	5		Burst Fi	ring 4 Cyc	cles On at	t 50% Po	wer Dema	and				4	
40A					4	0						wer Dema					8	
60A				0	6	0		Burst Fi	ring 16 C	cles On	at 50% P	ower Den	nand				6	
90A				0	9	0												
120A				1	2	0		CONTR	OL MOD	Ξ							11	
150A				1	5	0		descript	ion								code	N
180A				1	8	0		Open Lo	оор								0	\top
210A				2	1	0												
280A				2	8	0		FUSES	& OPTIO	N							12	
100A				4	0	0		descript	ion								code	N
150A				4	5	0		No Fuse	for all U	nits =< 40)A						0	\top
500A				5	0	0		Fuse + I	Fuse Holo	der							F	\top
600A				6	0	0		Fuse + I	Fuse Holo	der + CT							Υ	\top
700A						0		Fuse + I	Fuse Holo	der + CT -	+ HB with	Terminal	s				Н	\pm
								Fuse + I	Fuse Holo	der + CT -	+ HB with	Flat Cab	le Conne	ction			Χ	\pm
MAX VOLTAGE					7				uses Std 1								F	+
description				CC	ode	n	ote	Fixed Fu	uses Std	+ CT							Υ	+
480V					4			Fixed Fu	uses Std	+ CT + HE	В						Н	\pm
000V					6													
690V					7		5	FAN VC	LTAGE								13	
								descript									code	1
OLTAGE SUPPLY AUX.					8			Fan < 6									0	Τ.
description					ode	n	ote		V => 60A								1	+
No Aux. Voltage without HB and/or Analog Inpu	t up to 210A	A included			0				V => 60A		ion						2	+
With HB and/or Analog Input on all unit =<210A					4					. 0.0 70.0							_	
For all Units > 210A with whichever options and			20		-			APPRO	VALS								14	
90:130V	·puto				1		3	descript									code	N
170:265V					2		3		For Eur	nnean Ma	arket						0	Η.
230:345V					3		3	OL LIVIC	or or Lui	opcuii ivic	ance							_
300:530V					5		3	MANUA	d.								15	
510:690V					6		3	descript									code	
600:760V					7		3	None	1011								0	Η.
500.7 00 V							3	Italian									1	+
NPUT					9			English									2	+
description					ode	n	ote	German									3	+
SSR					S	- 11	ULE	French									4	+
0:10V dc					V			TIGHT									-	_
1:20mA					v A			VERSIO	NI								16	
T.4VIIIA					М			descript									code	N
ote (1) If you need one Revo S 2PH with 3 Fuse & Fu	se Holder For	dimension:	s see Revo	S 3PH.					with 2 fu	coc + fro	oc Holdo	40^					1	P
This solution can be used up to 40A max.									s with 2 f			-< 40A					2	+
ote (2) Available with Analog input only									s with 2 ii th 3 fuses			404					3	+
ote (3) Load voltage must be included in Selected Aux								Units Wi				- 4UA						

REVO S 3PH

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to 40°C without derating
- · Comply with EMC
- Data sheet: More details on "Revo S 3PH" bulletin

Option

- Analog input: 4/20 mA or 0/10V
- Heather Break Alarm + Current Transformer
- Current Transformer + HB Alarm

20		1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
Description Code	ORDERING CODE	R	S	3	_	_	_	-	_	_	_	_	_	_	_	_	_	_
0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0	CURRENT				4 5	6		FIRING									10	
5A	escription				code	no	ote	descript	ion								code	No
100	0A				0 3	0		ZC Zer	o Crossin	g							Z	
Burst Firing 16 Cycles On at 50% Power Demand 6 1 1 2 1 1 2 1 1 2 1 1	5A					5											4	2
10																		2
1								Burst Fi	ring 16 C	ycles On	at 50% P	ower Den	nand				6	2
1 5 0																		
1										E								
Page																		No
PUSES & OPTION 12 2 5 5 5 5 5 5 5 5						-		Open Lo	оор								0	
Solid																		
350A										N								
## ## ## ## ## ## ## ## ## ## ## ## ##																		No
Fuse + Fuse Holder + CT)A							
Fuse + Fuse Holder + CT + HB with terminals																		
MAX VOLTAGE 7																		_
Fixed Fuses Std for all Units > 40A	UUA				5 0	U								_				3
Fixed Fuses Std + CT	MAY VOLTACE				7							at cable t	onnectio	11				1
Fixed Fuses Std + CT + HB						n.	oto				IS > 40A							
FAN VOLTAGE SUPPLY AUX. Sand Secretary Secreta						110	JIE .				D							-
FAN VOLTAGE SUPPLY AUX. 8								rixeur	uses siu	+ 61 +11	ь						- 11	
VOLTAGE SUPPLY AUX. 8							5	FAN VC	I TAGE								13	
No Fan < 60A Sample	004																	No
Fan 110V = > 60A	OLTAGE SUPPLY AUX				8													- 110
Fan 220V > 60A Std Version 2						no	ote			A								
With HB and/or Analog Input on all unit =<210A Aux Volt 12:24V ac-dc		up to 210A	\ included								on							
APPROVALS 14					4													
170:265V 2 4								APPRO	VALS								14	
MANUAL 15 15 15 15 15 15 15 1	0:130V				1		4	descript	ion								code	No
MANUAL 15 15 15 15 15 15 15 1	70:265V				2		4	CE EM	C For Eur	opean Ma	arket						0	
Description Code Feed	30:345V				3		4											
None	00:530V				5		4	MANUA	\L								15	
Italian	10:690V						4	descript	ion								code	No
Post	00:760V				7		4	None										
Code Note Code Note Code Note Code								Italian										
SSR S French 4 0:10V dc V 4:20mA A VERSION 16 description code 1 Std Version 1 1	NPUT				9			English										
0:10V dc						no	ote		1									
4:20mA A VERSION 16 description code 1 Std Version 16								French									4	
ote (1) Fixed Fuses over 40A Std Version 1																		
ote (1) Fixed Fuses over 40A	:20mA				Α													
	ote (1) Fixed Fuses over 40A																	No
	ote (2) Available with Analog input only							Std Vers	sion								1	

REVO M 1PH

Delay Trig. Single Cycle Burst Firing BF+Soft Start RS485 POT 10K 0-10V 4-20mA SSR OPTION CONTROL MODE SCR cc HB+SCR cc Relay Output REVO M Std MODBUS 1 PH

Technical Specification

- **Dimensions:** See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared short long and medium waveform, Silicon Carbide
- Inputs: 0:10V dc, 4:20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing, Single Cicle, Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI Power, I and I2
- RS485 port. RTU Modbus Protocol
- Comply with EMC
- Data sheet: More details on "Revo M 1PH" bulletin

Option

INPUT

- HB + CT : Current transformer plus HB Alarm
- Configuration software + CCA (cable + converter)
- · Control mode retransmission

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ORDERING CODE 4 5 6 35A 40A 60A 90A 120A Open Loop Voltage Feed Back Power Feed Back Current Feed Back Volage to Power Feed Back Transfer 150A 180A **FUSES & OPTION** 210A 280A For Units =< 40A Fuse + Fuse Holder + CT Fuse + Fuse Holder + CT + HB with Terminal 400A For Units > 40A Fixed Fuse Std + CT Fixed Fuse Std + CT + HB 500A Control Mode Retransmission 4:20mA Control Mode Retransmission 0:10mV 700A 13 480 V No Fan < 120A 600 V 690V Fan 110V >= 120A Fan 220V >= 120A Std Version 90:130V 170:265V CE EMC For European Market 230:345V 300:530V 510:690V 600:760V None INPUT English German descriptio French 0:10V dc 4:20V mA 10KPot RS485 Std unit with 1 fuse Unit with 2 fuses + Fuse Holder =< 40A Unit with 2 fuses + Fuse Holder + Safety Relay =< 40A Unit with 2 fuses + Fuse Holder + Safety Relay =< 40A 10 Zero Crossing ZC Single Cycle SC Burst Firing BF Soft Start + Burst Firing S+BF Note (1) If you need one Revo M 1PH with 2 Fuse & Fuse Holder. For dimensions see Revo M 2PH. This solution can be used up to 40A max. Note (2) If you need one Revo M 1PH with 2 Fuse & Fuse Holder + safety relay. For dimensions see Relvo M 2PH. This solution can be used up to 40A max. Delayed Triggering + Burst Firing DT+BF Note (3) Fixed Fuse over 40A Note (4) Available on units => 400A Phase Angle PA Soft Start + Phase Angle S+PA Note (5) After 16th digit write current and voltage of load inside brackets Ex (190A-400V) Note (6) Load voltage must be included in Selected Auxiliary Voltage Range.

REVO M 2PH

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, infrared long and medium waveform, Silicon Carbide
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 to 40°C without derating
- Control mode: V Voltage, VxI Power
- RS485 port. RTU Modbus Protocol Std.
- Comply with EMC
- Data sheet: More details on "Revo M 2PH" bulletin

Option

- HB + CT : Current transformer plus HB Alarm
- Control Mode Retransmission
- Configuration software code: CCA (cable + converter + configuration software)
- Profibus DP, Modbus TCP from 60A to 700A

		1	1				1	1								1		Note 4
	1	2	3		4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	R	M	2		_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4	5	6		CONTR	OL MODE								11	
description					code	r	note	descripti	on								code	Note
30A				0	3	0		Open Lo									0	
35A				0	3	5			Feed Bac								U	
40A				0	4	0			eed Back								W	
60A				0	6	0		Current	Feed Bac	kΙ							ı	
90A				0	9	0												
120A				1	2	0			& OPTIO	N							12	
150A				1	5	0		descripti									code	Note
180A				1	8	0			s =< 40A								Υ	1
210A				2	1	0			use Hold								Н	
280A				2	8	0			s => 40A			CT					Υ	3
400A				4	0	0			ıse Std +								Н	
450A				4	5	0			Mode Ret								Α	
500A				5	0	0		Control I	Mode Ret	ransmiss	ion 0:10n	nV					V	
600A				6	0	0												
700A				7	0	0		FAN VO									13	
								descripti									code	Note
MAX VOLTAGE					7			No Fan									0	
description					code	r	note		V >= 120/	-							1	
480V					4			Fan 220	V >= 120	A Std Ver	sion						2	
600V					6													
690V Available on Units >= 400A					7		2	APPRO'									14	
				_				descripti									code	Note
VOLTAGE SUPPLY AUX.				_	8			CE EMC	For Euro	pean Ma	ırket						0	
description					code	r	note											
90:130V					1		5	MANUA									15	
170:265V					2		5	descripti	on								code	Note
230:345V					3		5	None									0	
300:530V					5		5	Italian									1	
510:690V					6		5	English									2	
600:760V					7		5	German									3	
					_			French									4	
INPUT					9													
description					code	r	note	VERSIO									16	
SSR					S			descripti									code	Note
0:10V dc					V				with 2 fus			=< 40A					1	1
4:20V mA					Α				> 40A wit								2	
10KPot					K			Unit with	3 fuses 8	k Fuse H	older =<	40A					3	1
RS485					R			N. 4 - (2) 11			Manu d	7.5 0						
				_				Note (1) If	you need or dimensi						404			
THE PLANT OF THE P					10			Note (2) A				. THIS SOIUT	ion can be	usea up to	+∪A IIIāX			
FIRING																		
description					code	r	note				400A							
					Z B	r	note	Note (3) F Note (4) A	ixed Fuses	over 40A		voltage of I	oad incido	brackotc 5	/ (100A.40	010		

REVO M 3PH

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistive, infrared long and medium waveform, Silicon Carbide
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI Power I and I2
- RS485 port. RTU Modbus Protocol Std.
- Comply with EMC
- Data sheet: More details on "Revo M 3PH" bulletin

Option

- HB + CT : Current transformer plus HB Alarm
- Control Mode Retransmission
- Configuration software code: CCA (cable + converter + configuration software)
- Profibus DP, Modbus TCP for unit > 300A

	1	ı	ı	i i			1	l	ı	ı		ı	ı		ı	i i	Note 2
	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	R	М	3	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	OL MODE	E							11	
description				code	no	ote	descript	ion								code	Note
30A				0 3	0		Open Lo	оор								0	
35A				0 3	5		Voltage	Feed Bac	k V							U	
40A				0 4	0		Power F	eed Back	(Vxl							W	
60A				0 6	0		Current	Feed Bac	k I							I	
90A				0 9	0												
120A				1 2	0		FUSES	& OPTIO	N							12	
150A				1 5	0		descript	ion								code	Note
180A				1 8	0		For Unit	s =< 40A	Fuse & F	use Hold	er + CT					Υ	
210A				2 1	0		Fuse &	Fuse Hold	der + CT -	+ HB with	Terminal					Н	
225A				2 2	5		For Unit	s => 40A	Fixed Fus	se Std + 0	CT					Υ	1
300A				3 0	0		Fixed Fu	use Std +	CT + HB							Н	
350A				3 5	0		Control	Mode Ret	transmiss	ion 4:20n	nA					Α	
400A				4 0	0		Control	Mode Ret	ransmiss	ion 0:10n	nV					V	
450A				4 5	0											-	
500A				5 0	0		FAN VO	I TAGE								13	
							descript									code	Note
MAX VOLTAGE				7				<= 120A								0	11010
description				code	no	ote		V >= 120	Α							1	
480 V				4				V >= 120		sion						2	
600 V				6													
690V Available on Units => 225A				7			APPRO	VALS								14	
				-			descript									code	Note
VOLTAGE SUPPLY AUX.				8				For Euro	pean Ma	rket						0	
description				code	e no	ote											
90:130V				1		3	MANUA	L								15	
170:265V				2	- :	3	descript	ion								code	Note
230:345V				3		3	None									0	
300:530V				5		3	Italian									1	
510:690V				6		3	English									2	
600:760V				7	- :	3	German									3	
							French									4	
INPUT			_	9													
description				code	no	ote	VERSIC	N								16	
SSR				S			descript	ion								code	Note
0:10V dc				V			Version	Std with 3	3 fuses							1	
4:20V mA				Α													
10KPot				K				Fixed Fuses									
RS485				R							voltage of I				00V)		
							Note (3)	Load voltag	e must be	included in	Selected A	Auxiliary Vo	itage Range	е.			
FIRING				10													
description				code	no	ote											
Zero Crossing ZC				Z													
Burst Firing BF				В													

CD 3000E 2PH

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, three phase transformer, coupled with normal resistance
- Inputs: 0-10V dc, 4-20mA, 10k Pot, SR485
- Firing mode: Zero Crossing, Burst Firing, DT+BF (not with cold resistance)
- Operating temperature: 0° to 40°C without derating
- Control mode: V Voltage, VxI Power, Open Loop
- RS485 port. RTU Modbus Protocol · Comply with EMC
- Data sheet: More details on "CD 3000E 2PH" bulletin

Option

- Configuration software code: CCA (cable converter
- + configuration software)
- Profibus DP Modbus TCP for unit > 280A

	I				I	ı				ı		ı	I			ı	Note 2
	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	R	E	2	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	OL MODE	E							11	
description				code	n	ote	descript	ion								code	Note
35A				0 3	5		Open Lo									0	
45A				0 4	5			Feed Bac								U	
75A				0 7	5			eed Back								W	
100A				1 0	0		Current	Feed Bac	k I							ı	
125A				1 2	5												
150A				1 5	0		OPTION									12	
200A				2 0	0		descript									code	Note
280A				2 8	0		Control	Mode Ret	ransmiss	ion 4:20r	nΑ					Α	
400A				4 0	0		Control	Mode Ret	ransmiss	ion 0:10r	nV					V	
450A				4 5	0												
500A				5 0	0		FAN VC	LTAGE								13	
600A				6 0	0		descript	ion								code	Note
700A				7 0	0		Fan Volt	tage equa	I to Aux.	Voltage						3	
MAX VOLTAGE				7			APPRO	VALS								14	
description				code	n	ote	descript									code	Note
480V				4				For Euro		arket						0	
600V				6			cUL For	Americar	Market							L	
VOLTAGE SUPPLY AUX.				8			MANUA	L								15	
description				code	n	ote	descript	ion								code	Note
110V				1			None									0	
230V				2			Italian									1	
							English									2	
INPUT				9			German									3	
description				code	n	ote	French									4	
SSR 3:30V dc				S													
0:10V dc				V			VERSIC	N								16	
4:20V mA				Α			descript									code	Note
10KPot				K				e Load/De								1	
RS485				R				e Load/St								2	
							Transfor	mer Load	/Delta Co	onnection						3	
FIRING				10			Transfor	mer Load	/Star Cor	nnection						4	
description				code	n	ote											
Zero Crossing ZC				Z													
Burst Firing BF				В													
Delayed Triggering + Burst Firing DT + BF				D		3											

Note (1) Internal Fixed Fuses.

Note (2) After 16th digit write current and voltage of load inside brackets Ex (190A-400V). Required if units are to be tuned to load.

Note (3) DT + BF can be used to drive transformers coupled with normal resistance.

CD 3000E 3PH

Technical Specification

- **Dimensions:** See size and dimensions from page 16 to 19
- Load type: Normal resistance, three phase transformer coupled with normal or cold resistance
- Inputs: None, SSR, 0-10V, 4-20mA, 10kpot, RS485 communication
- Firing mode: Zero Crossing, Single Cycle, Burst Firing, Soft Start + Burst Firing, Delayed Triggering + Burst Firing, Phase Angle, Soft Start + Phase Angle
- Operating temperature: 0° to 40°C without derating
- Control mode: V, VxI, I
- RS485 port. RTU Modbus Protocol
- Comply with EMC and cUL
- Data sheet: More details on "CD 3000E 3PH" bulletin

Option

• Configuration software code: CCA (cableconverter + configuration software)

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	Note 16
ORDERING CODE	R	E	3	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	ROL MOD	E							11	
description				code		ote	descrip									code	Note
35A				0 3	5		Open L									0	
45A				0 4	5			Feedbac								U	
75A				0 7	5			Feedback								W	
100A				1 0	0			Feedbac								I	
125A				1 2	5		Square	I Feedba	ck							Q	
150A				1 5	0												
225A				2 2	5		OPTIO									12	
300A				3 0	0		descrip									code	Note
350A				3 5	0			Mode Re								Α	
100A				4 0	0		Control	Mode Re	transmiss	sion 0:10r	nV					V	
50A				4 5	0												
500A				5 0	0			DLTAGE								13	
							descrip									code	Note
MAX VOLTAGE				7			Fan Vo	ltage equa	al to Aux.	Voltage						3	
escription				code	e n	ote											
480V				4			APPRO									14	
V000				6			descrip									code	Note
(0) = (0) 0 (0) 0 (0)								C For Eur		arket						0	
OLTAGE SUPPLY AUX.				8			CUL Fo	r America	n Market							L	
description				code	e n	ote											
110V 230V				1			MANU									15	
23UV				2			descrip	tion								code	Note
NOUT							None									0	
NPUT				9 code		-4-	Italian									2	_
description SSR 3:30V dc					e n	ote	English										_
55R 3:30V dc 0:10V dc				S			German	1								3 4	-
1:10V dc 1:20V mA				A			French									4	
10KPot				K			VERSION)N								16	
RS485				R			descrip									code	Note
10403				K				re Load/D	olta Conr	oction						1	INULE
FIRING				10				re Load/D								2	+
description				code	a n	ote		re Load/S			loutral					7	
Zero Crossing ZC				Z	- 11	Ole		rmer Load								3	
Single Cycles SC				C				rmer Load								4	+
Burst Firing BF				В				rmer Load			+ Neutral					5	_
Soft Start + Burst Firing S + BF				J				e Load/O			. 140000					6	
Delayed Triggering + Burst Firing DT + BF				D		2			•								
Phase Angle PA				P		_		After 16th				load inside	brackets E	x (190A-40	00V).		
				E				Required if	unite are t	o ho tunad	to load						

Multidrive 1PH

SIZE SR18

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, one phase transformer coupled with normal or cold resistance
- Inputs: 0-10V, 4-20mA, 10kpot, RS485 communication, SSR
- Firing mode: Burst Firing, Soft Start + Burst Firing, Delayed Triggering + Burst Firing, Phase Angle, Soft Start + Phase Angle
- Operating temperature: 0° to 40°C without derating
- Control mode: Voltage, Current Power, External signal, Current square
- RS485 port. RTU Modbus Protocol Std. for other Fieldbus see option
- Comply with EMC
- Data sheet: More details on "Multidrive 1PH" bulletin

Option

- Configuration software code: CCA (cable converter + configuration software)
- Profibus DP, ProfiNet and Modbus TCP

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	Note 16
ORDERING CODE	М	1	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
URRENT				3 4 5	6		CONTR	OL MODE	E							11	
lescription				code	r	note	descripti	on								code	Not
50A				0 8 5	0		Open Lo	ор								0	
000A				1 0 0	0		Voltage	Feed Bac	k V							U	
300A				1 3 0	0		Power F	eed Back	(VxI							W	
600A				1 6 0	0		Current	Feed Bac	k I							ı	_
800A				1 8 0	0		External	Feed Ba	ck							Е	
000A				2 0 0	0												
200A				2 2 0	0		OPTION									12	
400A				2 4 0	0	2	descripti	on								code	Not
								Retransm	nission							Α	3
MAX VOLTAGE				7			0:10V R	etransmis	ssion							V	3
escription				code	r	note											_
80V				4			FAN VO	LTAGE								13	
00V				6			descripti	on								code	Not
90V				7				age equa	I to Aux.	Voltage						3	
OLTAGE SUPPLY AUX.				8			APPRO	VALS								14	
lescription				code	r	note	descripti	on								code	Not
10V				1			CE EMC	For Euro	pean Ma	arket						Е	
30V				2													
							MANUA	L								15	
NPUT				9			descripti	on								code	Not
escription				code	r	note	None									0	
:10V dc				V			Italian									1	_
:20 mA				Α			English									2	
0KPot				K			German									3	_
RS485				R			French									4	_
																	_
IRING				10			VERSIO									16	
lescription				code	r	note	descripti									code	Not
Burst Firing BF				В			Resistive									8	
Soft Start + Burst Firing S + BF				J			Transfor	mer								9	
Delayed Triggering + Burst Firing DT + BF				D													
Phase Angle PA				Р													
Soft Start + Phase Angle S + PA				E													

Multidrive 2PH

SIZE SR19

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, three phase transformer coupled with normal resistance
- Inputs: 0-10V, 4-20mA, 10kpot, RS485 communication, SSR
- Firing mode: Zero Crossing, Burst Firing, Delayed Triggering + Burst Firing (not with cold resistance)
- Operating temperature: 0° to 40°C without derating
- Control mode: V Voltage, VxI Power and Current
- RS485 RTU port. Modbus Protocol Std. for other Fieldbus see option
- Comply with EMC and cUL up to 700A
- Data sheet: More details on "Multidrive 2PH" bulletin

Option

- Configuration software code: CCA (cable + converter
- + configuration software)
- Profibus DP, ProfiNet and Modbus TCP

	1	ı				ı				ı		1				1	Note
	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	М	2	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		FIRING									10	
description				code	no	te	descripti	on								code	note
35A				0 0 3			Burst Fir	ing BF								В	
15A					5		Delayed	Triggerin	g + Burst	Firing D	T + BF					D	
75A				0 0 7	5												
100A					0			OL MODE								11	
25A					5		descripti									code	No
50A					0		Open Lo									0	
25A					5			Feed Bac								U	
80A					0			eed Back								W	
00A					0		Current	Feed Bac	kΙ							I	
50A					0												
500A				0 5 0	0		OPTION									12	
00A				0 6 0	0		descripti	on								code	No
00A				0 7 0	0		4:20mA	Retransm	ission Lo	ad Curre	nt and Co	ontrol Mod	de			Α	1
50A				0 8 5	0		0:10V R	etransmis	sion Loa	d Current	and Con	trol Mode	:			V	
000A				1 0 0	0												
300A				1 3 0	0		FAN VO	LTAGE								13	
600A				1 6 0	0		descripti	on								code	No
800A				1 8 0	0		Fan Volt	age equa	I to Aux.	/oltage						3	
000A				2 0 0	0												
200A				2 2 0	0		APPRO'	/ALS								14	
400A				2 4 0	0 2	2	descripti	on								code	No
							CE EMC	For Euro	pean Ma	rket						0	
MAX VOLTAGE				7				American			A					L	4
escription				code	no	ote											
80V				4			MANUA									15	
00V				6			descripti	on								code	No
90V				7			None									0	
							Italian									1	
OLTAGE SUPPLY AUX.				8			English									2	
escription				code	no	te	German									3	
10V				1			French									4	
230V				2													
							VERSIO	N								16	
NPUT				9			descripti	on								code	No
escription				code	no	te	Resistive	Load/De	elta Conn	ection						1	
:10V				V			Resistive	Load/St	ar Conne	ction						2	
I:20 mA				Α			Transfor	mer Load	/Delta Co	nnection						3	
10KPot				K			Transfor	mer Load	/Star Cor	nection						4	
RS485				R													

Note (1) After 16th digit write current and voltage of load inside brackets Ex. (190A-400V)
This is to receive the Thyristor unit already tuned from CD Automation.
Note (2) Rating not available at 690V

Note (3) In total are available 4 Analog output. One dedicated to control mode and the other 3 for current on phases 1-2-3 Note (4) cUL Approval up to 700A included.

Multidrive 3PH

SIZE SR20

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19
- Load type: Normal resistance, Three phase transformer coupled with normal or cold resistance
- Inputs: 0-10V, 4-20mA, 10kpot, RS485 communication, SSR
- Firing mode: Zero Crossing, Burst Firing, Soft Start + Burst Firing, Phase Angle, Soft Start + Phase Angle and Delayed Triggering
- Operating temperature: 0° to 40°C without derating
- Control mode: Voltage, Power, Current, Current Square, External Profiling 0:10V
- RS485 port. RTU Modbus Protocol Std. for other Fieldbus see option
- Comply with EMC and cUL up to 500A
- Data sheet: More details on "Multidrive 3PH" bulletin

Option

- Configuration software code: CCA (cable + converter
- + configuration software)
- Profibus DP, ProfiNet and Modbus TCP

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	Note 16
ORDERING CODE	M	3					-			_	_		-		_		
CURRENT				3 4	5 6		FIRING									10	
description				COC		note	descripti	on								code	note
35A					3 5	TIOLE	Single C									C	HOLE
					4 5											В	-
45A							Burst Fir		F:							D	-
75A					7 5			t + Burst								D	
100A					0 0			Triggerin	g + Burst	Firing D	+ BF					_	
125A					2 5		Phase A									P	
150A					5 0		Soft Star	t + Phase	Angle S	+ PA						E	
225A					2 5												
300A					0 0			OL MODE								11	
350A					5 0		descripti									code	Not
400A				0 4	0 0		Open Lo	ор								0	
450A				0 4	5 0		Voltage I	Feed Bac	k V							U	
500A				0 5	0 0		Power F	eed Back	VxI							W	
600A				0 6	0 0		Current I	Feed Bac	kΙ							ı	
850A					5 0		External	Feed Bad	ck							Е	
1000A					0 0												
1300A					0 0		OPTION									12	
1600A					0 0		descripti									code	Not
1800A					0 0			Retransm	iccion							A	3
2000A					0 0			etransmis								V	3
2200A				2 2			U. 1UV PG	etransmis	SIOH							V	3
2400A				2 4		2										13	
2400A				2 4	0 0	2	4										NI-4
MAY VOLTA OF				_			descripti									code	Not
MAX VOLTAGE				7			Fan Volt	age equa	to Aux.	/oltage						3	
description				cod	е	note											
480V				4			APPRO\									14	
600V				6			descripti									code	Not
690V				7				For Euro								E	
				_			cUL For	American	Market u	ip to 500	A Included	t				L	4
VOLTAGE SUPPLY AUX.				8	_												
description				cod	e	note	MANUA									15	
110V				1			descripti	on								code	Not
230V				2			None									0	
							Italian									1	
INPUT				9			English									2	
description				cod	e	note	German									3	
0:10V				V			French									4	
4:20 mA				A													
10KPot				K	_		VERSIO	N _								16	
RS485				R			descripti									code	Note
				- 1				e Load/De	Ita Conn	ection						1	1400
lote (1) After 16th digit write current and voltage of load in	side brack	ets Ex (19	0A-400V).				e Load/St								2	
This is to receive the Thyristor unit already tuned fr								e Load/St			outral					7	
lote (2) Rating not available at 690V								mer Load			culidi					3	
lote (3) In total are available 4 Analog output. One dedicate	ed to cont	trol mode a	and the														
other 3 for current on phases 1-2-3								mer Load								4	
lote (4) cUL approval up to 500A included.								mer Load			- Neutral					5	-
• • • • • • • • • • • • • • • • • • • •							Resistive	e Load/Op	en Delta							6	

Dedicated to owners and managing directors

Buy REVO TC and you save money and space!

REVO TC Control and power in one unit

REVO TC SSR + Temperature Controller

The most compact integrated solution

- Temperature controller with 4 Output and PID
- Fuse & Fuse holder
- Solid state relay
- Current Transformer
- Single loop Integrity
- Dramatic reduction for wiring using multiple cable with connector
- Reduction of use space saving cabinet cost

REVO TC family

The new REVO TC is an integrated solution that offers the following advantages:

Wiring & Labour Savings.

An immediate cost saving in reduced labour of 2 hours by not connecting 11 wires per zone.

Each wire takes 11 mins when considering the following:

- Schematic reading and understanding
- Distance and path measuring
- Wire cutting
- Wire strapping
- Wire labelling on two terminations
- Wire crimping
- Terminals block wiring
- Panel drilling

Plus the actual material cost of 11 wires.

How much is the cost of one labour hour plus over-heads in your company?

How many control zones do you use in one year?

Make your calculation and see how much you save in one year Is there really a decision to be made!

A smaller system solution means less cabinet space required both on the front cabinet area and internally. Again you save money.

Take the advantage of the single loop integrity, high fault tolerability and very easy maintenance.

REVO TC 1PH 35/40A

This integrated solution includes all you need for a complete control zone at 240-480-600V AC to drive a single phase load.

- Fuse & fuse holder
- Solid state relay
- Current transformer
- Heater Break Alarm
- Temperature Controller

REVO TC 2PH 30/35/40A

This integrated solution includes all you need for a complete control zone at 480-600V AC to drive a three phase load in delta and star without neutral connection.

- 2 Off Fuse & fuse holder
- 2 Off Solid state relay
- 2 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller

REVO TC 3PH 30/35/40A

This integrated solution includes all you need for a complete control zone at 480-600V AC to drive a three phase load in delta and star with neutral connection.

- 3 Off Fuse & fuse holder
- 3 Off Solid state relay
- 3 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller

REVO TC 1PH 60/90/120/150/180/210A

This integrated solution includes all you need for a complete control zone at 240-480-600V AC to drive a single phase load.

- Internal fixed fuse
- Solid state relay
- · Current transformer
- Heater Break Alarm
- Temperature Controller

REVO TC 2PH 60/90/120/150/180/210A

This integrated solution includes all you need for a complete control zone at 480-600V AC to drive a three phase load in delta and star without neutral connection.

- 2 Off Internal fixed fuse
- 2 Off Solid state relay
- 2 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller

REVO TC 3PH 60/90/120/150/180/210A

This integrated solution includes all you need for a complete control zone at 480-600V AC to drive a three phase load in delta and star with neutral connection.

- 3 Off Internal fixed fuse
- 3 Off Solid state relay
- 3 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller

REVO TC philosophy

- Labour for wiring reduced dramatically using multiple cable with connector
- Reduction of used space, saving cabinet cost
- Single loop integrity with easy local identification of the faulty zone
- REVO TC up to 40A is normally used for plastics machinery
- REVO TC over 60A in one, two and three phase versions is normally used in Furnaces

1234

PID temperature controller with Pre Tune, Self Tune and Manual tuning

- 3 Off PID pallets to be enabled at programmed temperature
- RS485 communication from 19200 to 57600 Baud Modbus RTU protocol
- Dual Display to read PV, Set Point and load current
- Auto/Manual bump less balances
- \bullet Universal input for Thermocouples, RTD and linear Signal
- Four configurable outputs Relay, SSR, 4:20mA and 0:10V
- Cooling Output selection for Water, Oil or Ventilation
- Programming port USB with CD Automation programming cable

REVO Thyristor unit

- The temperature controller can be connected with different sized REVO Thyristor units
- If using SSR output from the controller use REVO S family
- If using Analogue output from the controller use REVO M family

REVO TU Module

The REVO TU is a termination unit with the following capabilities:

- Provides the power supply & RS485 comms (Modbus RTU) for up to a max 14 REVO TC units
- Collects alarm & digital input status from all connected REVO TC units
- Can switch on all REVO TC units at the same time using the internal Clock-Relay (date & time), ideal for a pre-heat warm-up function

TU-PB Gateway RS485 to ProfibusDP

- TU PB is a Gateway able to connect Profibus DP Masters (Multiloop, PLC, DCS) to max 30 REVO TC.
- For more information see the documentation available on www.cdautomation.com

System architecture with REVO TC

Modbus, Profibus DP, Can OPEN, Modbus TCP / Ethernet.

Specific models also support memory cards & a USB port for external memory & printer.

Dramatic reduction for wiring cables

Compare the new REVO TC to a traditional system and you save:

- 11 wires for each zone
- Each zone takes 11 minutes (see the diagram)
- For each zone you save 11 wires x 11 minutes = 121 minutes in total
- If you use descrete controllers you also avoid the panel cutting/drilling Thats another 15 minutes per controller.

Thats a total time saved of 136 minutes for zone. So how many zones/loops do you sell in one year?

WHY 11 MIN. FOR EACH WIRE?

Schematics reading and understanding,
distances and path measuring.
Wire cutting - Wire stripping - Wire labeling
Crimpling the lug with the copper
Terminal block wiring - Panel drilling

Traditional system

Same system REVO TC

REVO TC system

Traditional system

Today many machines adopt the traditional system layout as shown below:

REVO TC system

As can be seen, the new REVO TC distribuited hardware solution, will give crucial saving such as:

- Number of wires (cable and labour cost)
- Errors in wiring the machine
- No wire channels
- Cable lenght reduced by 80%
- Cabinet's space reduced
 Consider that each cabinet section saves 500 Euro.
- The cabinet space used is a key factor. If the space of components used is doubled then the cabinet size is doubled.

REVO TC controller + thyristor

SIZE SR9

Technical Specification

- Dimensions: SR9 | SR10 | SR11 | SR15 | SR16 | SR17 See size and dimensions at page 18-19
- Load type: Normal resistance with one or three phase loads
- Inputs: Thermocouple, PT100, 0:10V, 4-20mA
- Firing mode: Zero Crossing
- Operating temperature: 40°C without derating
- Control mode: PID temperature controller
- Two outputs std and configurable. Output 3 see code. Output 4 Std no relay contact
- RS485 port. RTU Modbus Protocol
- Comply with EMC
- Data sheet: More details on "REVO TC" bulletin

Option

• HB heater break alarm including internal current transformer

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	Т	C	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
PHASE CONTROLLED				3			OUTPU	T 3								10	
description				code	9 1	note	descrip									code	No
1 Phase Unit 1PH				1			1 off D/	24v d.c.								1	
2 Phase Unit 2PH				2			1 off D/	O relay co	ntact							2	
3 Phase Unit 3PH				3													
								& OPTIO								12	
CURRENT 1PH - 2PH - 3PH				4 5	6		descript									code	No
description				code		note				Units =<	40A					F	
30A				0 3	0	3		Fuse Hold								Υ	
35A				0 3	5					+ HB with						Н	
40A				0 4	0					+ HB with	flat cable	connect	ion			Х	
60A				0 6	0			uses Std t		its > 40A						F	1
90A				0 9	0			uses Std								Υ	
120A				1 2	0		Fixed F	uses Std	+ CT + H	В						Н	
150A				1 5	0												
180A				1 8	0			DLTAGE								13	
210A				2 1	0	2	descrip									code	No
							No Fan									0	
MAX VOLTAGE				7				V > 90A								1	
description				code	9 1	note	Fan 220)V > 90A								2	
480V				4													
600V				6			APPRO									14	
							descrip									code	Not
VOLTAGE SUPPLY AUX.				8			CE EM	C For Eur	opean Ma	arket						0	
description				code	9 1	note											
12:24V ac dc				4			MANUA									15	
				_			descrip	tion								code	No
INPUT				9			None									0	
description				code	9 1	note	Italian									1	
Thermocouple				Т			English									2	
PT 100				N			German	1								3	
0:10V dc				V			French									4	
4:20mA				Α													
							VERSION									16	
INPUT 2				9			descrip									code	No
description				code	9 1	note	Std unit	with a si	ngle fuse							1	
Relay output 2				R													

Note (1) Fixed fuses over 40A
Note (2) The temperature controller can be mounted as an option on all CD Automation Thyristor unit
Note (3) Available on 2 - 3 PH only

TMC temperature controller

SIZE SR11

Technical Specification

- PID Temperature controller
- Automatic Tuning of PID parameters with Self Tune or Pretune procedure
- Manual setting when requested of PID parameters
- Three pallets of PID parameters can be enabled at programmed PV value
- Dual Display to read PV,Set Point ,Load current and all parameters
- Universal input for Thermocouple ,RTD and linear input
- Four configurable outputs as Relay,SSR,and 4:20mA
- · Heating and Cooling controller with possibility to select the type of cooling for fan, water and oil
- RS485 communication from 19200 to 57600 Bauds Modbus RTU protocol
- The controller can be configured from front push button or via RS485 comm. or via USB port on front controller using CD Automation programming cable
- Auto/Manual with Bumpless Transfer facility
- Screw terminals as standard
- · DIN rail mounting
- Dimensions Width: 36 Height: 121 Depth: 86

• Flat cable and connectors for multiple controller system

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	T	С	М	_	_	_	-	_	_	_	_	_	_	_	_	_	_
INPUT				4			COMMI	JNICATIO	N							9	
description				code	n	ote	descript		-							code	Note
Thermocouple				Т			None									0	
PT100 – RTD				N			Commu	nication N	/lodbus R	RTU						M	
0:10V dc				V													
4:20 mA				Α			WIRING	SYSTEM	VI.							10	
							descript	ion								code	Note
INPUT 1 MAIN CONTROL				5			Screw to									0	
description				code	n	ote				I TU flat n						1	
SSR				S			RJ45 (R	S485 – 1	DI; need	I TU flat n	nodule)					2	
Relay				R													
0-10V dc				V			OPTION									11	
4-20 mA				Α			descript	ion								code	Note
							None									0	
							Input C	for HB a	ılarm							Н	
INPUT 2 PID COOLING OR ALARM				6													
description				code	n	ote		ARY VOL	TAGE							12	
None				0			descript		code	Note							
SSR				R			12-24V	ac dc								4	
Relay				S													
0-10V dc				V			APPRO									13	
4-20 mA				Α			descript									code	Note
							CE EMO)								1	
OUTPUT 3				7													
description				code	n	ote	APPRO									14	
None				0			descript	ion								code	Note
Relay output				R			None									0	
Digital input 0-10V dc retransmission				1 V			Italian									1	
							English									2	
4-20 mA retransmission				Α			German French									3	
OUTPUT 4				8			French									4	
description				code		ote	VERSIO	M.								15	
None				0	n	Ole	descript									code	Note
Relay output				R			Version									1	Note
Digital input				1			version									1	
0-10V dc retransmission				V													
0-104 00 100 010111331011				A													

Why to use REVO PC

BENEFITS:

- Reduce the cost of your energy bill
- Reduce the size of your cable and remove the flikering on lights
- Improve the power factor close to 1
- Reduction of harmonics on main supply
- Reduce the electrodynamic forces between coils of transformer on main supply increasing its life

Transform a simple solid state Relay in advanced thyristor unit adding these features:

- Communication RS485.
- Heater break Alarm for partial or total load failure
- Power scaling for each zone
- Power Load Management
- Intelligent unit with communication cost more than Revo PC + solid state Relay In addition you have the Power Load Management free of charge.

Easy for responsible of software to manage the communication.

These is because he has to write software from PLC or Multiloop Controller to one device like Revo PC that provide itself to communicate up to 24 solid state relay. In addiction you save the cost of output module.

REVO PC

Revolution in power control

Revo PC was designed specifically to manage multizone systems. This powerful unit, with its unique algorithm, will minimize your energy costs by controlling sychronization and power limit.

Benefits include:

- Elimination of power overshoot (see graph below)
- Power factor close to one due to zero crossing firing
- Relay PC keeps your instantaneous power within the limit of your electricity supply contract
- Prevents increases in energy supply tariffs imposed by your electricity supplier
- Quick return on your investment

This powerful unit with high performance micro can drive simple thyristor unit like Relay S with zero crossing firing. By using the PC, simple thyristor units can be used reducing the overall financial investment.

- Simultaneous fast full wave control of:
- 8-16-24 Revo S 1PH single phase units
- 8 Revo S 2PH/3PH for 3 phase loads
- Each loop's process information is managed in independent mode with:
- Calculation of instant current and RMS Current
- Power calculation of load resistance with Heater Break Alarm
- Modbus Master, Modbus slave, Profilbus DP, Modbus/TCP and other fieldbus available

Easy to start REVO PC

Only few parameter are requested to start with Revo PC:

- Set the operative current of the heater zone
- Set the Total Power Limit
- Set the Power of each zone

The Revo PC strategy is easy to implement.

Do the same operation with a competitor's load management system and the operator must learn up to 15 pages of the manual and understand up to five models of synchronization.

Synchronization

On all controlled zones, the Live Predictive Synchronization is automatic resulting in superior performance:

- Total current is equal to a sinusoidal wave form
- Power factor > 0,9
- Instantaneous current close to average value
- Cancellation of harmonics
- Power saving by harmonic reduction
- Flickering effect removed

Synchronization selection is available for normal resistive loads or short infrared.

Smart Power limitation

- Smart power limitation works together with synchronization If this function is enabled, Revo PC makes a live calculation of power at each period and generates the output values for the next period.
- If the calculated power is below the power limit value, the previous values remain with each channel using full power
- If the power is above the power limit value, the setpoint of each channel is reduced proportionally to restrict power overshoot This function significantly reduces disturbances on the main network compared to a full power system, preventing any increase in energy tariffs imposed by the electricity supplier.
- This function can be activated/deactivated and the limit value changed at any time

General Rules to size a REVO PC System

- Each Revo PC Suitable to drive 1 Phase Loads can have up to 24 Channels
- RPC08 : Can drive up to 8 Revo S 1PH with Random Firing
- RPC16: Can drive up to 16 Revo S 1PH with Random Firing
- RPC24: Can drive up to 24 Revo S 1PH with Random Firing
- The zero crossing is performed inside Revo PC
- Each Revo PC Suitable to drive 3 Phase Loads controlled on 2 Phases have 16 Channels
- RPC28: Can drive up to 16 Revo S 1PH with Zero Crossing Firing
- We use 2 Off Revo S 1PH for each 3 Phase Load so in total we control 8 three phase loads
- Each Revo PC Suitable to drive 3 Phase Loads controlled on 3 Phases have 24 Channels
- RPC38: Can drive up to 24 Revo S 1PH with Zero Crossing Firing
- We use 3 Off Revo S 1PH for each 3 Phase Load so in total we control 8 three phase loads
- For each Revo PC it's necessary
- 1 Off Auxiliary Voltage Transformer Ex. Between L1 and L2
- This is necessary to syncronize Revo PC with the loads wired below same voltage
- For each 8 Channels of one Revo PC it's necessary one Current Transformer
- The Current Transformer must have a primary with current > Totale power connected L1 and L2 /Voltage L1 and L2
- For RPC-28 are necessary 3 Off Current Sensor on incoming L1; L2; L3
- The Current Transformer must have a primary with current > Totale power connected on L1; L2 and L3 (Voltage Supply x 1,73)
- For RPC-38 are necessary 3 Off Current Sensor on incoming L1; L2; L3
- The Current Transformer must have a primary with current > Totale power connected on L1; L2 and L3 (Voltage Supply x 1,73)

Application with 8, 16 or 24 single phase loads

Application with 8 three phase loads

Without power control optimisation

With power control optimisation

REVO PC

POWER CONTROL CODE

	1	2	3	4	ı	5		6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	R	P	С	-	-	_		_	-	_	_	_	_	-	_	_	_	_	_
CHANNEL				4	5	6			FIRING									10	
description					code		note		descript	ion								code	Note
8 channel for 8 off 1 phase units max				0	0	8			Half cyc	le at 50%	power d	lemand fo	r 1 phase	loads				1	
16 channel for 16 off 1 phase units max				0	1	6			Half cyc	le at 50%	power d	lemand fo	r 3 phase	loads				2	
24 channel for 24 off 1 phase units max				0	2	4													
16 channel for 8 off 3 phase loads controlled on 2	phase			0	2	8			FEED E	BACK (CO	ONTROL	MODE)						11	
24 channel for 8 off 3 phase units controlled on 3	ohase			0	3	8			descript	ion								code	Note
									No feed	back								1	
CURRENT SENSOR FOR REVO PC					7				Power									2	
description					code		note												
For current sensor see tab below "Current sensor	for Revo	PC"			0				APPRO	VALS								12	
									descript	ion								code	Note
COMMUNICATION					8				CE EMO	21								1	
description					code		note												
1 port ethernet Modbus TCP internal aux voltage					1				MANUA									13	
1 Modbus slave port					2				descript	ion								code	Note
1 Modbus master port + 1 Modbus slave					3				None									0	
1 profibus DP port aux voltage 24 v DC					4				Italian									1	
1 Ethernet port, profiNET protocol 24 v DC					5				English									2	
2 Ethernet port, TCP protocol for client-server					6				German									3	
2 Ethernet port, multi protocol port (ethernet IP, ETHER	CAT, TCF	, profinet)	24vDC		7				French									4	
PRIMARY/SECONDARY/AUXILIARY VOLTAGE	TRANCE	OBMED			9				VERSIO	NI.								14	
	TRANSF	URWER		_	code		note												Note
description Transformer 90:130V / 24v							note		descript									code	Note
Transformer 90:130V / 24V				-	2				version	1								1	
				-				-											
Transformer 230:245V / 24v				-	4			-											
Transformer 300:530V / 24v Transformer 510:690V / 24v					5			-											
				-	7			-											
Transformer 600:760V / 24v		/																	

ADDITIONAL UNITS TO BE ORDERED WITH REVO PC

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	T	S	-	_	_	-	_	-	_	_	_	-	_	_	_	_
CURRENT SENSOR FOR REVO PC											4	5	6				
Description												code			1	note	
Current 50/0,05											0	0	0		1	-2-3	
Current 100/0,05											0	0	1		1	-2-3	
Current 150/0,05											0	0	2		1	-2-3	
Current 200/0,05											0	0	3		1	-2-3	
Current 250/0,05											0	0	4		1	-2-3	
Current 400/0,05											0	0	5		1	-2-3	
Current 800/0,05											0	0	6		1	-2-3	
Current 1000/0,05											0	0	7		1	-2-3	
Current 1500/0,05											0	0	8		1	-2-3	
Current 2000/0,05											0	0	9		1	-2-3	

Note (1) Use 1 Off Current Sensor for each 8 Channels on Revo PC Example: System with 24 zone 1 phase.

To be able to equilibrate the current on phase L1, L2 and L3 it's necessary to connect 8 zone on each phase coupled with one Revo PC synchronized on same voltage supply. In total we need: 3 Off Revo PC 08 + 3 Off Current sensor + 24 Off Revo S 1PH with Random Firing.

Note (2) Example System with 6 three phase loads controlled on 2 Phase.1 Off Revo PC 28 + 3 Off Current sensor + 12 Off Revo S 1PH with Zero Crossing Firing. With Revo PC the Revo S 2PH has to be formed by 2 Off Revo S 1PH

Note (3) Example System with 6 three phase loads controlled on 3 Phase.1 Off Revo PC 38 + 3 Off Current sensor + 18 Off Revo S 1PH with Zero Crossing Firing. With Revo PC architecture the Revo S 3PH has to be formed by 3 Off Revo S 1PH For more details see ask for Application Note on Revo PC

REVO is a system not just a product

The innovative designe of REVO Family has been done to satisfy system solutions and to do it has been considered following auxiliary units:

Copper bar

This picture show how it is possible to mount REVO on copper bars with Length 12:30 mm and thickness 5:10 mm Lateral Support for 3 copper bars **Code:** SC3-30 Lateral Support for 4 copper bars **Code:** SC4-30

Base plate

Different type of base plate are available

The Base Plate have 3 Off Screw terminals 16 mm2

W 54 x L 200 **Code:** BP-54-200 W 72 x L 200 **Code:** BP-72-200 W 54 x L 260 **Code:** BP-54-260

Cabinet

This is a cabinet under construction where is possible to see copper bars on all cabinet back panel.

The structure rapresented is the best possible solution to have system coordination for hight short circuit current.

In addition is not necessary to wire power cables from Automatic circuit breaker to each thyristor units.

The base plate are plug- in thus in case of fault it's possible to substitute a complete zone.

Cabinet

This is the cabinet at the end of the mounting and wiring of 60 off temperature controll zones.

The cabinet is very clean from mounting point of view.

Base plate + Adaptator

How it's possible to see on original base plate can be mounted an adaptor.

CD Automation has many of this adaptor for its product. This is an adaptor for REVO 3PH Thyristor unit

Code: AD-Insert code REVO unit

Adaptator

This is an adaptor for REVO up to 210 A in different configuration like 1. 2 or 3 Phase Controll.

Copper comb 3PH

This is a copper comb for three phase connections.

This product is sold in pices of one meter.

To have IP20 is available a plastic protection that is supplied as standard

Pitch:36 Central connection:130A Side connection:80A

Code: Comb-3PH-36

Copper comb 1PH

This is a comb done with copper to make a multiple connection of REVO 1PH or REVO SSR

This product is sold in pices of one meter.

To have IP20 is available a plastic protection that is supplied as standard

Pitch:36 Central connection:130A Side connection:80A

Code: Comb 1PH-36

Screw terminal

This is a screw terminal that can be mounted in each position of the copper comb above.

Code: ST16

This is an example of package where there are 9 Unit. One or more screw terminal can be allocated where we want. From this terminal a traditional cable will be connected to circuit breaker directly.

3 phase diode bridge

Horizon for diode high current bridge

\$36 H 640 x W 717 x D 320 - 86/110 kg.

General description

- All circuit board, fuses and thyristor can be inspected on opening front door
- Internal fixed fuses are standard with relay contact output for fuse failure
- Current transformer integrated (option)
- Special design for heat sink with very high dissipation value and cooling tunnel
- Easy for use with diagnostic and wiring diagram on front unit
- Aluminium modulare structure and copper treated against oxidation
- Comply with EMC
- Panel mounting

These are our targets:

• Each phase can be substituded by front unit by technician just removing 4 screw without the help of forklift.

The avarage weight of phase is 16kg

Time required to substitute one phase not more than 10 minuts

- Plant downtime not more than 10 minuts, vital for important process
- When the operator substitute one phase all the auxiliary connection are plug in
- This allow to be fast and to don't do mistakes in wiring

	OUTPUT FEATURES									
Current Idc	Voltage Range up to	Ripetitive peak (600V)	reverse voltage (690V)	Max peak one cycle (10 msec)	Diode	Frequency range (Hz)	Power Loss ⊫Inom (W)			
2000A	330÷690V	2900	2900	17900	1602000	47÷70	1827			
2300A	330÷690V	2900	2900	17900	1602000	47÷70	2220			
3000A	330÷600V	3000	3000	30200	3920000	47÷70	2590			
3500A	330÷690V	2600	2600 2600		6230000	47÷70	2765			
4000A	330÷600V	2500	2500	45000	10125000	47÷70	2933			

3 PHASE DIODE BRIDGE

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	В	D	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		OPTION	& FUSE								12	
description				code	no	ote	descript	ion								code	Note
2000A				2 0 0	0		Fix Fuse	es Standa	ırd							F	
2300A					0		Fix Fuse	es + CT								Υ	
3000A				3 0 0													
3500A				3 5 0			FAN VC	LTAGE								13	
4000A				4 0 0	0		descript	ion								code	Note
							Fan 110	V								1	
MAX VOLTAGE				7			Fan 220	V Standa	ırd							2	
description				code	no	ote											
480V				4			APPRO	VALS								14	
600V				6			descript	ion								code	Note
690V				7			CE EMO									0	
VOLTAGE SUPPLY AUX.				8			MANUA									15	
description				code	no	ote	descript	ion								code	Note
110V				1			None									0	
220V				2			Italian									1	
							English									2	
INPUT				9			German									3	
description				code	no	ote	French									4	
No Input				0													
							LOAD 1									16	
FIRING				10			descript									code	Note
description				code	no	ote	Resistiv									1	
None				0			Inductiv	e Load								2	
CONTROL MODE				11													
description				code	. No	ote											
None				0													

SIZE 32

	DIMENSION
Current	2000A / 2300A / 3000A / 3500A
Wide	635 mm
Deep	320 mm
Height	550 mm
	Wide Deep

SIZE 35

	DIMENSION
Current	4000A
Wide	635 mm
Deep	320 mm
Height	640 mm

3 phase SCR bridge

Horizon for SCR high power bridge

\$36 H 640 x W 717 x D 320 - 86/110 kg.

General description

- All circuit board, fuses and thyristor can be inspected on opening front door
- Electronic circuit fully isolated from power
- Internal fixed fuses are standard with relay contact output for fuse failure
- Current transformer integrated (option)
- Special design for heat sink with very high dissipation value and cooling tunnel
- Easy for use with diagnostic and wiring diagram on front unit
- Aluminium modulare structure and copper treated against oxidation
- Comply with EMC
- Panel mounting

Maintainability in function

These are our targets:

- Each phase can be substituded by front unit by technician just removing 4 screw without the help of forklift
- The avarage weight of phase is 16 kg
- Time required to substitute one phase not more than 10 minuts
- Plant downtime not more than 10 minuts, vital for important process
- When the operator substitute one phase all the auxiliary connection are plug in
- This allow to be fast and to don't do mistakes in wiring
- Control board plug in for the connection

				OUTI	PUT FEATURES				
Current	Voltage Range	Ripetitive peak (600V)	reverse voltage (690V)	Latching current (mAeff)	Max peak one cycle (10 msec)	Leakage current (mAeff)	I2T value for fusing tp=10msec	Frequency range (Hz)	Power Loss I=Inom (W)
1000A	330÷690V	1600	2400	700	12500	300	78100	47÷70	2442
1300A	330÷690V	1800	1800	700	22400	300	2509000	47÷70	2594
1600A	330÷600V	1600	N.A.	700	24600	300	3026000	47÷70	2972
1800A	330÷690V	1600	N.A.	700	26900	300	3618000	47÷70	2876
2000A	330÷600V	1800	1800	700	36000	300	6480000	47÷70	3032
2200A	330÷690V	1800	1800	700	36000	300	6480000	47÷70	3896
2400A	330÷600V	N.A.	2200	700	60000	300	18000000	47÷70	4496

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	В	Т	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	5 6		OPTIO	N & FUSE								12	
description				code		ote	descript	ion								code	Note
1000A				1 0 (Fix Fus	es Standa	rd							F	
1300A				1 3 (Fix Fus	es + CT								Υ	
1600A					0 0												
1800A					0 0		FAN VO									13	
2000A				2 0 0			descript									code	Note
2200A				2 2 (Fan 110									1	
2400A				2 4 (0 0		Fan 220	V Standa	rd							2	
MAX VOLTAGE				7			APPRO	VALS								14	
description				code	e n	ote	descript	ion								code	Note
480V				4			CE EM									0	
600V				6													
690V				7			MANUA	\L								15	
							descript	ion								code	Note
VOLTAGE SUPPLY AUX.				8			None									0	
description				code	e n	ote	Italian									1	
110V				1			English									2	
220V				2			German	1								3	
							French									4	
INPUT				9													
description				code	e n	ote	LOAD 1	ГҮРЕ								16	
0:10V				V			descript									code	Note
4:20 mA				Α			Resistiv									1	
							Inductiv	e Load								2	
FIRING				10													
description				code	e n	ote											
Phase Angle				Р													

SIZE 32

	DIMENSION
Current	1000A / 1300A
Wide	717 mm
Deep	320 mm
Height	550 mm

SIZE 35

	DIMENSION
Current	1600A / 1800A / 2000A / 2200A / 2400A
Wide	717 mm
Deep	320 mm
Height	640 mm

Custom Family

This products range has been designed with these targets:

- Basic product able to satisfy OEM needs
- Basic Options like Analogue input and Heather Break Alarm
- Easy to be used rugged and very reliable
- Possibility to be customized with OEM logo
- Manuals available in neutral version whithout CD Brand
- Plastic parts in light and dark grey for covers
- Competive pricing where quantity are available

CD3000/Custom feature comparison

	Unit type	CD30	00S 1PH	CD30	00S 2PH	CD30	00S 3PH	CD300	OM 1PH	CD300	OM 2PH
	CODE	CD30	00S 1PH	CD30	00S 2PH	CD30	00S 3PH	CD300	OOM 1PH	CD300	OOM 2PH
	Nominal max voltage power supply	240*-4	180-600V	480	0-600V	480)-600V	240*-4	180-600V	480)-600V
R	Current range	15	:700A	10	:700A	15	:700A	15:	700A	15:	700A
LOAD TYPE	Single phase		•						•		
OAE	3 phase load delta or star no neutral				•						•
2	3 phase load star with neutral 3 phase load open delta						•				
	SSR 0-30VDC		•		•		•		•		•
	Ac input 110 or 230V	up to	110A O	up to	110A O	up to	90A 0		•		
INPUT TYPE	4-20mA loop powered	-	110A O			•					
Ę	4-20mA								•		•
M	0-10VDC								•		
_	Potentiometer (10k)								•		•
	Communication command								•		•
	Zero crossing Single cycle		•		•		•		•		•
	Burst firing								•		•
FIRING	Soft start + burst								•		
E	Phase angle								•		
	Delayed triggering								•		
	Universal firing								•		•
⊞ ₹	Voltage drop compensation Voltage or current feedback (V or I)								•		•
FEED	Voltage or current feedback (V or I) Power feed back (V x I)										
	Internal current limit										
Z	External current limit profiling										
OPTION	Heater break + short circuit on SCR	up to	110A 0*	up to	100A 0*	up to	90A 0*		0		0
Ö	External fuse & fuse holder		110A		100A		90A		110A		100A
	Internal fuse RS485 with modbus protocol	>	110A	>	100A	>	90A	>	110A	>	110A
	RS485 with modbus protocol								•	TILDE	•
OMIN	· · · · · · · · · · · · · · · · · · ·									TU-PB; TU-DN TU-PB; T	
COMM	Profibus + Devicenet + Canbus							TU-PE		TU-PE	
	Profibus + Devicenet + Canbus Cd keypad connectivity							TU-PE	B; TU-DN	TU-PE	B; TU-DN
CONFG. COMM	Profibus + Devicenet + Canbus							TU-PE		TU-PE	
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad	SIZE	MARK	SIZE	MARK	SIZE	MARK	SIZE	•	SIZE	•
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable	SIZE	MARK	SIZE SO	MARK CE	SIZE	MARK		•		•
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15	SO	cUL/CE	S0 S1	CE cUL/CE	SIZE S2	MARK cUL/CE	SIZE	• MARK	SIZE S1C	MARK
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25			S0	CE	S2	cUL/CE	SIZE	• MARK	SIZE	• MARK
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30	\$0 \$0	cUL/CE cUL/CE	S0 S1 S1	CE cUL/CE cUL/CE			SIZE SOC SOC	MARK cUL/CE cUL/CE	SIZE S1C S1C	MARK cul/ce cul/ce
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35	\$0 \$0 \$0	cUL/CE cUL/CE	\$0 \$1 \$1	CE cUL/CE cUL/CE	S2 S4	cUL/CE	SIZE SOC SOC	MARK CUL/CE CUL/CE	\$1C \$1C \$1C	MARK cUL/CE cUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30	\$0 \$0	cUL/CE cUL/CE cUL/CE	S0 S1 S1	CE cUL/CE cUL/CE	S2	cUL/CE	SIZE SOC SOC	MARK cUL/CE cUL/CE cUL/CE	SIZE S1C S1C	MARK cul/ce cul/ce
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45	\$0 \$0 \$0 \$3 \$3	cUL/CE cUL/CE	\$0 \$1 \$1	CE cUL/CE cUL/CE	\$2 \$4 \$6	cUL/CE	\$0C \$0C \$3C \$3C	MARK CUL/CE CUL/CE	\$1C \$1C \$1C	MARK cUL/CE cUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60	\$0 \$0 \$0 \$3 \$3	cUL/CE cUL/CE cUL/CE	\$0 \$1 \$1 \$4 \$7	CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8	cUL/CE cUL/CE cUL/CE	\$0C \$0C \$3C \$3C	MARK cUL/CE cUL/CE cUL/CE	\$1C \$1C \$1C \$4C \$7C	MARK cUL/CE cUL/CE cUL/CE cUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100	\$0 \$0 \$3 \$3 \$3 \$7	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$0 \$1 \$1 \$4 \$7	CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8	cUL/CE cUL/CE cUL/CE cUL/CE	\$0C \$0C \$3C \$3C \$7C	MARK cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$1C \$1C \$1C \$4C \$7C	MARK cUL/CE cUL/CE cUL/CE cUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110	\$0 \$0 \$3 \$3 \$7 \$7	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$0 \$1 \$1 \$4 \$7 \$8	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$0C \$0C \$3C \$3C \$7C \$7C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE	\$0 \$1 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$7C \$8C \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE	\$0 \$1 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$7C \$8C \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE	\$0 \$1 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9	CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$7C \$8C \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9	CUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$7C \$8C \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9	MARK CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 2110 225 275 300 350	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$7 \$8 \$9 \$9 \$9	cUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$7 \$8 \$9 \$9	cUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$10	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$13 \$14 \$14	cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$10 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$7 \$8 \$9 \$9 \$9	cUL/CE	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$10	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$13 \$14 \$14	cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	MARK CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$10 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$1ZE \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$10 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10	MARK CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9 \$12	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10 \$14 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10 \$14	MARK CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 450 400 450 500 550 600 700 800 1100	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9 \$12	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10 \$14 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10 \$14	MARK CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 450 600 700 800 1100	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9 \$12	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10 \$14 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10 \$14	MARK CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 2110 225 275 300 350 450 600 750 600 700 800 1100 1100 1100 1110 125	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9 \$12	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10 \$14 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10 \$14	MARK CUL/CE CUL/CE
CONFG.	Profibus + Devicenet + Canbus Cd keypad connectivity Frontal keypad Personal computer programmable CURRENT 2x10 15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 450 600 700 800 1100	\$0 \$0 \$3 \$3 \$3 \$7 \$7 \$8 \$9 \$9 \$9 \$9 \$9 \$12	CUL/CE CU	\$0 \$1 \$1 \$4 \$7 \$8 \$8 \$9 \$9 \$10 \$14 \$14 \$14	CE cUL/CE	\$2 \$4 \$6 \$8 \$8 \$8 \$8 \$11 \$11 \$11 \$14 \$14 \$14	cUL/CE cUL/CE	\$12E \$0C \$0C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	MARK CUL/CE CUL/CE	\$1C \$1C \$1C \$4C \$7C \$8C \$8C \$9 \$9 \$10 \$14	MARK CUL/CE CUL/CE

Standard	O Option	Note (*) no cUL MARK	Note (1) Strengthened ventilation system in cUL version
----------------------------	----------	----------------------	---

CD300	ом зрн	CD	3200	Custo	m 1PH	Custo	m 2PH	Custor	n 3PH		
CD300	OM 3PH	CF	3200		 C1	(C2	C	3		NOTE
	-600V		0-600V		00-690V		00-690V	480-60			NOIL
	700A		:700A		2400A		2400A	150:2			The products
15.7	700A	13	0.700A		•	150	2400A	150.2	400A		CD3000E 1PH_2PH_3PH and
			•		•		•				Multidrive 1PH_2PH_3PH
	•						•				are units CE/cUL approved.
	•										These units are in the family REVO wi
	•				•		•				name:
											RE 1PH_2PH_ 3PH and
											M1_M2_M3
	•		•		0		0	C)		
	•		•		0		0	C)		
	•		•								
	•		•								
	•				•		•	•	•		
	•				•		•				
			•								
	•		•								
	•		•								
	-		•								
			•								
			•								
			•								
(0	0 0			0	0 0)		
≤9	90A ≤110A		110A								
	90A				•	•		•			
	•		•								
	; TU-DN	TU-PI	B; TU-DN								
	•		•								
	•		•								
SIZE	MARK	SIZE	MARK	SIZE	MARK	SIZE	MARK	SIZE	MARK	CURRENT	
SILE	IVIARK	SILE	IVIARK	SIZE	IVIARIN	SILE	IVIANN	SILE	IVIARI	CORREINI	
S2C										2v10	
	cUL/CF	SOC	cUL/CF							2x10	
-	cUL/CE	SOC SOC	cUL/CE cUL/CE							2x10 15 25	
S4C	cUL/CE		cUL/CE cUL/CE							15	
										15 25	
	cUL/CE	SOC	cUL/CE cUL/CE		5					15 25 30	
S4C S6C S8C	cUL/CE	SOC S3C	cUL/CE							15 25 30 35 45	
\$4C \$6C \$8C \$8C	cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C	cUL/CE cUL/CE cUL/CE							15 25 30 35 45 60 75	
S4C S6C S8C	cUL/CE cUL/CE	\$0C \$3C \$3C	cUL/CE cUL/CE cUL/CE							15 25 30 35 45 60 75	
\$4C \$6C \$8C \$8C	cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C	CUL/CE CUL/CE CUL/CE CUL/CE							15 25 30 35 45 60 75 90	
\$4C \$6C \$8C \$8C \$8C	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$3C \$3C \$3C \$7C	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE							15 25 30 35 45 60 75 90 100	
\$4C \$6C \$8C \$8C \$8C	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$7C \$7C	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE			520				15 25 30 35 45 60 75 90 100 110	
\$4C \$6C \$8C \$8C \$8C	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE			S28	CE	\$28	CE	15 25 30 35 45 60 75 90 100 110 125	
\$4C \$6C \$8C \$8C \$8C	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$7C \$7C	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE					\$28		15 25 30 35 45 60 75 90 100 110 125 150 200	
\$4C \$6C \$8C \$8C \$8C \$8C \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE			\$28 \$28	CE	\$28		15 25 30 35 45 60 75 90 100 110 125 150 200 210	
\$4C \$6C \$8C \$8C \$8C	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE					\$28		15 25 30 35 45 60 75 90 100 110 125 150 200 210	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE	\$28	CE	S28	CE		CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275	
\$4C \$6C \$8C \$8C \$8C \$11 \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE	S28	CE			\$28 \$30		15 25 30 35 45 60 75 90 100 110 125 150 200 210	
\$4C \$6C \$8C \$8C \$8C \$11 \$11	cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE cUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9	CUL/CE	S28	CE	S28	CE		CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$13	CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	CUL/CE	S28	CE	S28	CE		CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11	CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	CUL/CE	\$28	CE	\$28 \$28	CE CE		CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	CUL/CE (UL/CE (1)	\$28 \$28	CE	\$28 \$28	CE CE		CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9	CUL/CE (UL/CE (1)			\$28 \$28 \$29	CE CE	S30	CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12	CUL/CE CUL/CE			\$28 \$28 \$29	CE CE	S30	CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	\$28 \$28	CE CE	\$28 \$28 \$29 \$29 \$29 \$29	CE CE CE CE CE	\$30 \$30 \$30	CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	S28 S28 S31	CE CE CE	\$28 \$29 \$29 \$29 \$29 \$29 \$32	CE CE CE CE CE CE CE	\$30 \$30 \$30 \$33 \$33	CE CE CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800 1100	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	\$28 \$28 \$31 \$31	CE CE CE	\$28 \$29 \$29 \$29 \$29 \$32 \$32	CE CE CE CE CE CE CE CE CE	\$30 \$30 \$30 \$33 \$33 \$33	CE CE CE CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800 1100 1400	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	\$28 \$28 \$31 \$31 \$34	CE CE CE CE	\$28 \$29 \$29 \$29 \$29 \$32 \$32 \$35	CE	\$30 \$30 \$30 \$33 \$33 \$33 \$36	CE CE CE CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800 1100 1400 1700	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	\$28 \$28 \$31 \$31 \$34 \$34	CE CE CE CE CE	\$28 \$29 \$29 \$29 \$29 \$32 \$32 \$35 \$35	CE	\$30 \$30 \$30 \$33 \$33 \$36 \$36	CE CE CE CE CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800 1100 1400 1700 1900	
\$4C \$6C \$8C \$8C \$8C \$8C \$11 \$11 \$11 \$14 \$14 \$14	CUL/CE CUL/CE	\$3C \$3C \$3C \$7C \$7C \$8C \$9 \$9 \$9 \$12 \$12	CUL/CE CUL/CE	\$28 \$28 \$31 \$31 \$34	CE CE CE CE	\$28 \$29 \$29 \$29 \$29 \$32 \$32 \$35	CE	\$30 \$30 \$30 \$33 \$33 \$33 \$36	CE CE CE CE CE	15 25 30 35 45 60 75 90 100 110 125 150 200 210 225 275 300 350 400 450 500 550 600 700 800 1100 1400 1700	

ZE AND DIMENSIONS

CD3000 size and dimensions CE-EMC & CUL Approval

See full specification on web

SO H 120 x W 30 x D 120 **SOC** H 120 x W 63 x D 120

S1 H 120 x W 60 x D 120 **S1C** H 120 x W 95 x D 120

S2 H 120 x W 92 x D 120 **S2C** H 120 x W 123 x D 120

S3 H 120 x W 52 x D 120 **S3C** H 120 x W 85 x D 120

S4 H 120 x W 117 x D 123 **S4C** H 120 x W 148 x D 123

S6 H 138 x W 117 x D 123 **S6C** H 138 x W 148 x D 123

S7 H 120 x W 117 x D 159 **S7C** H 120 x W 148 x D 159

S8 H 138 x W 117 x D 159 **S8C** H 138 x W 148 x D 159

S9 H 316 x W 116 x D 187

\$10 H 350 x W 116 x D 220

\$11 H 440 x W 137 x D 270

\$12 H 520 x W 137 x D 270

\$13 H 440 x W 262 x D 270

\$14 H 520 x W 262 x D 270

Custom size and dimensions CE-EMC Approval

See full specification on web

S28 H 478 x W 130 x D 274 - 14kg.

S29 H 478 x W 260 x D 274 - 27kg.

\$30 H 478 x W 390 x D 274 - 42kg.

S31 H 550 x W 329 x D 320 - 27kg.

\$32 H 550 x W 523 x D 320 - 49kg.

S33 H 550 x W 717 x D 320 - 72kg.

S34 H 640 x W 329 x D 320 - 32/40kg.

\$35 H 640 x W 523 x D 320 - 59/75kg.

S36 H 640 x W 717 x D 320 - 86/110kg.

Technical Specification

- Voltage power supply: 24V minimum, 480V or 600V max
- Current limit: Adjustable by pot or by serial comm
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long, short and medium waveform, silicon carbide, cold resistance coupled with transformer
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Soft Start + Phase Angle, Delayed Triggering

440V

- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI power, current I and I²
- RS485 port. RTU Modbus Protocol
- Comply with EMC cUL
- Mounting: DIN rail up to 110A, bulk head over 110A
- IP20 protection
- Data sheet: More details on "CD3200" bulletin

Tool

- Configuration software to configure thyristor units
 Free of charge on www.cdautomation.com
- Set of cables and connectors plus converter for the connection between thyristors unit port and computer with installed above configuration software

HB + UL

ORDERING CODE

Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Feed back	Options	Manual
CD 3200	15A 25A 35A 45A 60A 90A 110A 125A 150A 200A 300A 400A 500A 600A	24V min	480 600	90:130V 170:265V 230:345V 300:530V 510:690V	0÷10V 4÷20mA 10K Pot. SSR	S+PA (Soft start + Phase Angle) PA (Phase Angle)	V I Vx1 I ²	NCL (No current limit) COMM (RS485 Modbus) CD-KP (Eternal Key Pad) EF (External Fuse + fuse holder) NF (No Fuse) IF (Internal Fuses are St. over 110A) HB (Heater Break alarm) 110V Fan (Fan at 110V) UL (cUL us listed)	None Italian English German French

300:530V

0 ÷10V

CD 3000S 1PH

Technical Specification

- Single phase thyristor: Unit up to 700A
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to 40°C without derating
- Comply with EMC
- Heater break alarm: diagnostic partial or total load failure up to 110A
- IP20 Protection
- Data sheet: More details on "CD 3000S 1PH" bulletin

Option

- Analog input: 4/20 mA or 0/10V
- Heather Break Alarm + Current Transformer

ING CODE	

Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Options	Manual
CD 3000S 1PH	2x10 15A 25A 35A 45A 60A 90A 110A 125A 150A 200A 300A 400A 500A 600A	24V min	480 600	No 14:24V 90:130V 170:265V 230:345V 300:530V 510:690V	SSR 0÷10V 4÷20mA 10K Pot. 110V ac (1) 230V ac (1) 4:20 Loop powered	ZC (Zero Crossing) BF (Burst Firing) with analog BF04 (4 cycles on + 4 off) BF08 (8 cycles on + 8 off) BF016 (16 cycles on + 16 off) Note: For Bust Firing specify the desired n° of cycles ON at 50% of power demand	EF (External Fuse + fuse holder) NF (No Fuse) IF (Internal Fuses are St. over 110V) HB (Heater Break alarm) 110V Fan (Fan at 110V) UL (cUL us listed)	None Italian English German French
	700A							

Example code compilation

			:	:				*
CD 3000S 1PH	150A	440V	480V	300:530V	4:20 mA	BF08	HB	English

Note (1) This feature is available up to 110A included

60

CD 3200

CD 3000S 2PH

Technical Specification

- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to 40°C without derating
- Comply with EMC and cUL
- CD 3000S 2PH: Two legs switcing 3 wire load star or delta connected
- Thyristor unit up to 700A
- HB alarm to diagnostic partial or total load failure from 40 to 100A
- IP20 protection

ORDERING CODE

• Data sheet: More details on "CD3000S 2PH" bulletin

Option

- Current transformers
- HB alarm to diagnostic partial or total load failure

10 15A 25A 35A 45A ZC (Zero Crossing) No (1) EF (External Fuse + fuse holder up to 100A) 75A BF (Burst Firing) with analog 14:24V (3) SSR NF (No Fuse up to 100A) 100A Italian BF04 (4 cycles on + 4 off) 90:130V (2) IF (Internal Fuses are St. over 100A) 125A CD 3000S 2PH 24V min English BF08 (8 cycles on + 8 off) 150A HB (Heater Break alarm) 4÷20mA 600 170:265V (2) BF016 (16 cycles on + 16 off) 200A 10K Pot. 110V Fan (Fan at 110V) 230:345V (2) French 275A 300:530V (2) UL (cUL us listed) For Bust Firing specify the desired 400A n° of cycles ON at 50% of power 450A 500A 600A 700A Example code compilation

Note (1) No auxiliary voltage supply from 10 to 100A included Note (2) This is the auxiliary voltage supply over 100A Note (3) Necessary with 0:10V - 4:20 mA and HB Alarm

150A

440V

480V

300:530V

CD 3000S 2PH

CD 3000S 3PH

Technical Specification

- Dimensions: See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to 40°C without derating
- Comply with EMC
- Data sheet: More details on "CD3000S 3PH" bulletin

Option

- Analog input: 4/20 mA or 0/10V
- Heather Break Alarm + Current Transformer
- Current Transformer + HB Alarm
- Input: 110V ac

RDERING C	ODE							
Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Options	Manual
	15A							
	30A							
	45A							
	60A							
	75A			No (1)			EF (External Fuse + fuse holder up to 90A)	
	90A			90:130V (2)			NF (No Fuse up to 90A)	None
D 3000S 3PH	125A	24V min	480	230:345V (2)	SSR	ZC (Zero crossing)	HB (Heater Break alarm)	Italian
חירב בטטטב ער.	150A	24V IIIIII	600		110 Vac	ZC (Zeio ciossing)		German
	225A			300:530V (2)			110V Fan (Fan at 110V)	French
	300A			510:690V (2)			UL (cUL us listed)	
	350A							
	400A							
	450A							
	500A							
xample code cor	npilation							
D 3000S 3PH	150A	440V	480V	300:530V	SSR	ZC	UL + EF	English

Note (1) No auxiliary voltage supply from 15 to 90A included Note (2) This is the auxiliary voltage supply over 90A

English

BF08

4:20 mA

CD 3000M 1PH

Technical Specification

- **Dimensions:** See size and dimensions from page 56 to 59
- CD3000M: Is a digital and universal thyristor unit configurable via serial communication port
- RS485 comm. ModBus Protocol: Included as standard
- Single phase thyristor: Unit up to 700A
- Universal input
- Load type: Normal resistance, infrared short long and medium waveform, Silicon Carbide
- Inputs: 0:10V dc, 4:20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing, Single Cicle, Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI Power, I and I2
- RS485 port. RTU Modbus Protocol • Comply with EMC and cUL
- IP20 protection
- Data sheet: More details on "CD 3000M 1PH" bulletin

Option

- HB + CT : Current transformer plus HB Alarm
- Configuration software + CCA (cable + converter)

ORDERING CODE

Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Control mode	Options	Manual
CD 3000M 1PH	15A 25A 35A 45A 60A 90A 110A 125A 150A 200A 300A 400A 500A 600A	24V min	480 600	90:130V (1) 170:265V (1) 230:345V (1) 300:530V (1) 510:690V (1)	SSR 0+10V 4+20mA 10K Pot.	ZC (Zero Crossing) SC (Single Cycle) BF (Burst Firing) DT (Delayed trigg. + Burst Firing) S+BF (Soft start + Burst Firing) PA (Phase Angle) Note: For Bust Firing specify the desired n° of cycles ON at 50% of power demand	V I VxI	COMM (RS485 ModBus) CD-KP (Eternal Key Pad) EF (External Fuse + fuse holder) NF (No Fuse) IF (Internal Fuses are St. over 110V) HB (Heater Break alarm) 110V Fan (Fan at 110V) UL (cUL us listed)	None Italian English German French

Note (1) Auxiliary voltage supply must be synchronized with load voltage Load voltage must be inside the aux voltage range

CD 3000M 1PH

CD 3000M 2PH

SIZE S14

Technical Specification

- **Dimensions:** See size and dimensions from page 56 to 59
- CD3000M: Is a digital and universal thyristor unit configurable via serial communication port
- RS485 comm. ModBus Protocol: Included as standard
- Two phase thyristor: Unit up to 700A
- Universal input
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 to 40°C without derating
- Control mode: V Voltage, VxI Power
- RS485 port. RTU Modbus Protocol Std.
- Comply with EMC and cUL
- IP20 protection
- Data sheet: More details on "CD 3000M 2PH" bulletin

Option

- HB + CT : Current transformer plus HB Alarm
- Configuration software + CCA (cable + converter)

ORDERING CODE													
Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Control mode	Options	Manual				
	15A												
	25A												
	35A												
	45A												
	75A			90:130V (1)		ZC (zero crossing)		EF (External Fuse + fuse holder)	None				
	90A			170:265V (1)	SSR	SC (Single cycle)	V	NF (No Fuse)	Italian				
CD 3000M 2PH	125A	24V min	480	230:345V (1)	0÷10V	BF (Burst firing)	-	IF (Internal Fuses are St. over 110V)					
CD 3000IVI ZPH	150A	24V IIIIII	600		4÷20mA	Note:	ı	HB (Heater Break alarm)	English				
	200A			300:530V (1)	10K Pot.	For Bust Firing specify the	VxI	110V Fan (Fan at 110V)	German				
	300A			510:690V (1)		desired n° of cycles ON at 50% of power demand		UL (cUL us listed)	French				
	400A					F		or (cor as listea)					
	500A												
	600A												
	700A												
Example code cor	mpilation												

150A Note (1) Auxiliary voltage supply must be synchronized with load voltage.

Load voltage must be inside the aux voltage range

CD 3000M 2PH

English

300:530V 4÷20mA

300:530V 4÷20mA

English

CD 3000M 3PH

Technical Specification

- **Dimensions:** See size and dimensions from page 56 to 59
- CD3000M: Is a digital and universal thyristor unit configurable via serial communication port
- RS485 comm. ModBus Protocol: Included as standard
- Three phase thyristor: Unit up to 500A
- Load type: Normal resistive, infrared long and medium waveform
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 to 40°C without derating
- Control mode: Voltage, VxI Power I and I2
- RS485 port. RTU Modbus Protocol Std.
- Comply with EMC and cUL
- IP20 protection
- Data sheet: More details on "CD 3000M 3PH" bulletin

Option

• HB + CT : Current transformer plus HB configuration software + CCA (cable + converter)

English

Model	Current (A)	Oper. Voltage (V)	Max Voltage (V)	Aux Voltage (V)	Input	Firing mode	Control mode	Options	Manual
	15A								
	25A	-							
	30A					ZC (zero crossing)			
	45A					SC (Single cycle)		COMM (RS485 ModBus)	
	60A			90:130V (1)		BF (Burst firing)		CD-KP (Eternal Key Pad)	None
	75A			170:265V (1)	SSR	, ,	V	EF (External Fuse + fuse holder)	Italian
	90A		480		0÷10V	DT (Delayed Trigg. + Burst Firing)	. •		
CD 3000M 3PH	125A	24V min	600	230:345V (1)	4÷20mA	S+BF (Soft start + Burst Firing)	1	NF (No Fuse)	English
	150A			300:530V (1)	10K Pot.	PA (Phase angle)	VxI	IF (Internal Fuses are St. over 110V)	German
	225A			510:690V (1)	TOK POL	Note:		HB (Heater Break alarm)	French
	300A					For Bust Firing specify the		UL (cUL us listed)	
	350A					desired n° of cycles ON at 50% of power demand			
	400A					,			
	500A								

Note (1) Auxiliary voltage supply must be synchronized with load voltage.

Load voltage must be inside the aux voltage range

CD 3000M 3PH

AUTOMATION

300:530V 4÷20mA

DON'T GO CRAZY! If you want an easy life select our Custom Unit

Custom 1PH from 300A to 800A

- One phase thyristor: Unit from 300 to 800A
- Suitable to drive: 1 phase loads at 480-600-690V
- Dimensions: See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad: Alarm indication and setting
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA as option
- Firing mode: Zero Crossing and Burst Firing available with analog input
- Operating temperature: 0° to 40°C without derating
- IP20 protection: Standard
- Comply with CE-EMC
- Data sheet: More details on "Custom 1PH from 300 to 800A" bulletin

Option

Measurement package including:

- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power
- Second thermal switch: For high heat sink temperature with free voltage contact output
- Fuse failure: Microswitch with free voltage contact output

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	1	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		CONTR	OL MODE								11	
description				code	no	ote	descripti	on								code	Note
300A				0 3 0	0		Open Lo	ор								0	
550A	A																
800A		0 8 0	0		OPTION									12			
					descripti									code	Note		
MAX VOLTAGE		7			Measure	ement pad	kage inc	luding he	ater break	alarm ar	nd current	,		Н			
description		code	no	ote		and powe	r read ou	t									
480V		4			None									0			
600V		6															
690V				7			FAN VO									13	
							descripti	on								code	Note
AUX. VOLTAGE SUPPLY				8			110V									1	
description				code		ote	220V St	andard								2	
90:130V				1		1									_		
170:265V 230:345V				2		1	APPRO									14	N
300:530V				3		1	descripti									code	Note
510:690V				5		1	CE-EMC	,								0	
600:760V				6		1	MANUA										
600:7607				1		I	descripti									15 code	Note
INPUT				9			None	OH								0	Note
description				code	n n	ote	Italian									1	
SSR				S	110	JIE	English									2	
0:10V dc				V			German									3	
4:20 mA				A			French									4	
1.20 1131				- /			TTOTION									-	
FIRING				10			VERSIO	N								16	
description				code	no	ote	descripti									code	Note
Zero Crossing with SSR input				Z				d in line w								1	
Burst Firing 4 Cycles ON at 50% Power Demand				4		2		d + 2nd th								2	
Burst Firing 8 Cycles ON at 50% Power Demand				8		2		d + fuse n								3	
Burst Firing 16 Cycles ON at 50% Power Demand				6		2	Standard	d + 2nd th	ermal sw	ritch + fus	e micro					4	

Note (1) Load voltage supply as value must be included in auxiliary voltage supply range.

Note (2) Burst firing is a zero crossing firing

Custom 1PH from 1100A to 2700A

SIZE S31 - from 1100A to 1400A

SIZE S34 - from 1700A to 2700A

Technical Specification

- One phase thyristor: Unit from 1100 to 2700A
- Suitable to drive: 1 phase loads at 480-600-690V
- Dimensions: See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad setting: Alarm indication and configuration
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA selectable
- Firing mode: Zero Crossing and Burst Firing available with analog input and configurable from 1 to 255 cycles ON at 50% power demand
- Removible phase: By front unit without fork lift help
- Stall protection alarm: For faulty fan
- Second thermal switch: For high heat sink temperature with free voltage contact output standard

- Fuse failure microswitch: Free voltage contact output standard
- Structure: Alluminium and copper structure treated against oxidation
- Diagnostic and wiring diagram: Easy to use on front unit
- Operating temperature: 0° to 40°C without derating • **IPO protection:** Standard
- IP20 protection: Option
- Comply with CE-EMC
- Data sheet: More details on "Custom 1PH from 1100 to 2700A" bulletin

Measurement package including:

New version in production from January 2015

- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power

			ı	1	i		1			ı		I				ı	
	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	1	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4	3 4 5 6 CONTROL MODE										11		
description				cod	e n	note	descript	ion								code	Note
1100A				1 1	0 0		Open Lo	оор								0	
1400A				1 4	0 0			feed back								U	
1700A					0 0		Power fe	eed back								W	
1900A				1 9	0 0		Current	feed back								ı	
2100A					0 0												
2700A				2 7	0 0		OPTION									12	
							descript	ion								code	Note
MAX VOLTAGE				7			None									0	
description				cod	e n	note	Measure	ement pac	kage incl	uding hea	ater break	alarm ar	nd current	,		Н	
480V				4			voltage	and powe	r read out	t						п	
600V				6													
690V				7			FAN VO	LTAGE								13	
							descript	ion								code	Note
VOLTAGE AUX. SUPPLY				8			110V									1	
description				cod	e n	note	220V									2	
110V				0													
230V				2			APPRO	VALS								14	
							descript	ion								code	Note
INPUT				9			CE-EMO	+ IP0 pro	tection s	tandard						0	
description				cod	e n	note	CE-EMO	CE-EMC + IP20 protection standard									
SSR				S			CE-EMC	+ protect	ion with fl	at plexigla	ass mount	ed on pilla	ars (on VE	RSION 1	,2)	2	
0:10V dc				V													
4:20 mA				Α			MANUA									15	
Potentiometer				K			descript	ion								code	Note
							None									0	
FIRING				10			Italian									1	
description				cod	e n	ote	English									2	
Zero Crossing with SSR input				Z			German									3	
Burst firing configurable from 1 to 255 at 50% p	ower deman	d		В		1	French									4	
Note (1) Burst firing is a zero crossing firing							VERSIC	N								16	
Note (2) Available just as spare unit giving serial numbe	Г						descript									code	Note
								with Multio	drive hoa	rd Produ	ction just	as snare	nart			1	2
								with Custo								2	2
							VEISIUII	with Oust	,,,, boalu	and non	a suppui	t or meat	SILVE ANTILLE			_	

Custom 2PH from 150A to 800A

SIZE \$29 - 450A - 550A - 800A

Technical Specification

- Two phase thyristor: Unit from 150 to 800A
- Suitable to drive: 3 phase loads at 480-600-690V on three phases
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad: Alarm indication and setting
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA as option
- Firing mode: Zero Crossing and Burst Firing available with analog input
- Operating temperature: 0° to 40°C without derating
- IP20 protection: Standard
- Comply with CE-EMC
- Data sheet: More details on "Custom 3PH from 150 to 800A" bulletin

Option

Measurement package including:

- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power
- Second thermal switch: For high heat sink temperature with free voltage contact output
- Fuse failure: Microswitch with free voltage contact output

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	2	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		CONTR	OL MODE	E							11	
description				code		ote	descripti	on								code	Note
150A				0 1 5			Open Lo	ор								0	
210A				0 2 1													
300A					0		OPTION									12	
450A					0		descripti									code	Note
550A				0 5 5							ater break	k alarm a	nd curren	t,		Н	
800A				0 8 0	0			and powe	r read ou	t							
				_			None									0	
MAX VOLTAGE				7													
description				code	e no	ote	FAN VO									13	
480V				4			descripti									code	Note
600V				6			Fan 110									1	
690V				7			Fan 220	V Standa	rd							2	
AUX. VOLTAGE SUPPLY				8			APPRO1	VALS								14	
description				code	e no	ote	descripti									code	Note
90:130V				1		1	CE-ECN	1								0	
170:265V				2		1											
230:345V				3		1	MANUA									15	
300:530V				5		1	descripti	on								code	Note
510:690V				6		1	None									0	
600:760V				7		1	Italian									1	
							English									2	
INPUT				9			German									3	
description				code	e no	ote	French									4	
SSR				S													
0:10V dc				V			VERSIO									16	
4:20 mA				Α			descripti	on								code	Note
									ith above							1	
FIRING				10					d therma							2	
description				code	no	ote			nicro swite							3	
Zero Crossing with SSR input				Z			Standard	d + fuse n	nicro swite	ch + fuse	micro					4	
Burst Firing 4 Cycles on at 50% Power				4		2											
Burst Firing 8 Cycles on at 50% Power				8		2											
Burst Firing 16 Cycles on at 50% Power				6		2											

Note (1) Load voltage supply as value must be included in auxiliary voltage supply range. Note (2) Burst firing is a zero crossing firing

Custom 2PH from 1100A to 2700A

SIZE S32 - from 1100A to 1400A

SIZE S35 - from 1700A to 2700A

Technical Specification

- Two phase thyristor: Unit from 1100 to 2700A
- Suitable to drive: 3 phase loads at 480-600-690V with 2 phase controlled
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad setting: Alarm indication and configuration
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA selectable
- Firing mode: Zero Crossing and Burst Firing available with analog input and configurable from 1 to 255 cycles ON at 50% power demand
- Removible phase: By front unit without fork lift help
- Stall protection alarm: For faulty fan
- Second thermal switch: For high heat sink temperature with free voltage contact output standard

- Fuse failure microswitch: Free voltage contact output standard
- Structure: Alluminium and copper structure treated against oxidation
- Diagnostic and wiring diagram: Easy to use on front unit
- Operating temperature: 0° to 40°C without derating • **IPO protection:** Standard
- IP20 protection: Option
- Comply with CE-EMC
- Data sheet: More details on "Custom 2PH from 1100 to 2700A" bulletin

Option

Measurement package including:

New version in production from January 2015

- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power

	1 1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
	•		3	4	3	0		,	•	9	10	- 11	12	13	14	15	10
ORDERING CODE	С	2	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		CONTR	OL MODE								11	
description				code	e no	ote	descript	ion								code	Note
1100A				1 1 0	0 0		Open Lo	оор								0	
1400A				1 4 0	0 0		Voltage	feed back								U	
1700A					0 (Power fe	eed back								W	
1900A				1 9 0	0 0		Current	feed back								ı	
2100A				2 1 0	0 0												
2700A				2 7 0	0 0		OPTION									12	
							descript	ion								code	Note
MAX VOLTAGE				7			None									0	
description				code	e no	ote	Measure	ement pac	kage incl	luding he	ater break	alarm ar	nd current	i,			
480V				4			voltage	and powe	r read ou	t						Н	
600V				6													
690V				7			FAN VO	LTAGE								13	
							descript	ion								code	Note
VOLTAGE AUX. SUPPLY				8			110V									1	
description				code	e no	ote	220V									2	
110V				0													
230V				2			APPRO	VALS								14	
							descript	ion								code	Note
INPUT				9			CE-EMO	+ IP0 pro	tection s	tandard						0	
description				code	e no	ote	CE-EMC	C + IP20 o	ne protec	ction for e	ach phas	е				1	
SSR				S			CE-EMC	+ protect	ion with fl	at plexigla	ass mount	ted on pilla	ars (on VE	ERSION 1	,2)	2	
0:10V dc				V				•					`				
4:20 mA				Α			MANUA	L								15	
Potentiometer				K			descript	ion								code	Note
							None									0	
FIRING				10			Italian									1	
description				code	e no	ote	English									2	
Zero Crossing with SSR input				Z			German									3	
Burst firing configurable from 1 to 255 at 50% p	ower demand	d		В		1	French									4	
Note (1) Burst firing is a zero crossing firing							VERSIC	NM .								16	
Note (2) Available just as spare unit giving serial numbe	er															code	Note
, , , , , , , , , , , , , , , , , , , ,							descript		drivo bo =	rd Dro-li	ation in-t	00 000	nort			code 1	
								with Multio									2
							version	with Custo	orn board	and fron	tai suppoi	t of neat	sınk wnite	•		2	2

Custom 3PH from 150A to 800A

Technical Specification

- Three phase thyristor: Unit from 150 to 800A
- Suitable to drive: 3 phase loads at 480-600-690V on three phases
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad: Alarm indication and setting
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA as option
- Firing mode: Zero Crossing and Burst Firing available with analog input
- Operating temperature: 0° to 40°C without derating
- IP20 protection: Standard
- Comply with CE-EMC
- Data sheet: More details on "Custom 2PH from 150 to 800A" bulletin

Option

- **Measurement package including:**
- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power
- Second thermal switch: For high heat sink temperature with free voltage contact output
- Fuse failure: Microswitch with free voltage contact output

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	3	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		CONTR	OL MODI	E							11	
description				code	e n	ote	descript	on								code	Note
150A				0 1 5			Open Lo	ор								0	
300A				0 3 0													
550A				0 5 5			OPTION									12	
800A				0 8 0	0		descript									code	Note
											ater breal	k alarm aı	nd curren	t,		Н	
MAX VOLTAGE				7				and powe	r read ou	ıt							
description				code	e n	ote	None									0	
480V				4													
600V				6			FAN VO									13	
690V				7			descript									code	Note
							Fan 110									1	
AUX. VOLTAGE SUPPLY				8			Fan 220	V Standa	rd							2	
description				code		ote											
90:130V				1		1	APPRO									14	
170:265V				2		1	descript									code	Note
230:345V				3		1	CE-ECN	1								0	
300:530V				5		1											
510:690V				6		1	MANUA									15	
600:760V				7		1	descript	on								code	Note
					_		None									0	
INPUT				9			Italian									1	
description				code	e n	ote	English									2	
SSR				S			German									3	
0:10V dc				V			French									4	
4:20 mA				Α			VEDOLO									40	
FIRMO				- 40			VERSIO									16	N
FIRING				10		oto	descript		ith above							code	Note
description Zero Crossing with SSR input				code	e no	ote			ith above d therma							2	
				Z 4		2			nicro swit							3	
Burst Firing 4 Cycles on at 50% Power Burst Firing 8 Cycles on at 50% Power				8		2				cn ch + micr	_					4	
Burst Firing 8 Cycles on at 50% Power Burst Firing 16 Cycles on at 50% Power				6		2	Standar	u + iuse r	IIICIO SWIT	cri + micr	U					4	

Note (1) Load voltage supply as value must be included in auxiliary voltage supply range.

Note (2) Burst firing is a zero crossing firing

Custom 3PH from 1100A to 2700A

SIZE S33 - from 1100A to 1400A

SIZE S36 - from 1700A to 2700A

Technical Specification

- Three phase thyristor: Unit from 1100 to 2700A
- Suitable to drive: 3 phase loads at 480-600-690V with 3 phase controlled
- **Dimensions:** See size and dimensions from page 56 to 59
- Load type: Normal resistance, infrared long and medium
- Frontal key pad setting: Alarm indication and configuration
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA selectable
- Firing mode: Zero Crossing and Burst Firing available with analog input and configurable from 1 to 255 cycles ON at 50% power demand
- Removible phase: By front unit without fork lift help
- Stall protection alarm: For faulty fan
- Second thermal switch: For high heat sink temperature with free voltage contact output standard

- Fuse failure microswitch: Free voltage contact output standard
- Structure: Alluminium and copper structure treated against oxidation
- Diagnostic and wiring diagram: Easy to use on front unit • Operating temperature: 0° to 40°C without derating
- IPO protection: Standard
- IP20 protection: Option
- Comply with CE-EMC
- Data sheet: More details on "Custom 3PH from 1100 to 2700A" bulletin

- **Measurement package including:**
- Heather break alarm: Diagnostic partial or total load failure
- Digital read out: Current, voltage and power

	11	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	С	3	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				3 4 5	6		CONTR	OL MODE								11	
description				code		ote	descript	ion								code	Note
1100A				1 1 0	0		Open Lo	ор								0	
1400A					0			feed back								U	
1700A					0			eed back								W	
1900A					0		Current	feed back								ı	
2100A					0												
2700A				2 7 0	0		OPTION									12	
							descript	ion								code	Note
MAX VOLTAGE				7			None									0	
description				code	n	ote		ement pac			ater break	alarm ar	nd current	,		Н	
480V				4			voltage	and powe	r read ou	t						11	
600V				6													
690V				7			FAN VO	LTAGE								13	
							descript	ion								code	Note
VOLTAGE AUX. SUPPLY				8			110V									1	
description				code	n	ote	220V									2	
110V				0													
230V				2			APPRO	VALS								14	
							descript	ion								code	Note
INPUT				9			CE-EMO	+ IP0 pro	tection s	tandard						0	
description				code	n	ote	CE-EMO	+ IP20 o	ne protec	ction for e	ach phase	е				1	
SSR				S			CE-EMC	+ protect	ion with fl	at plexigla	ass mount	ed on pilla	ars (on VE	RSION 1,	2)	2	
0:10V dc				V													
4:20 mA				Α			MANUA									15	
Potentiometer				K			descript	ion								code	Note
							None									0	
FIRING				10			Italian									1	
description				code	n	ote	English									2	
Zero Crossing with SSR input				Z			German									3	
Burst firing configurable from 1 to 255 at 50% po	ower demand	d		В		1	French									4	
Note (1) Burst firing is a zero crossing firing							VERSIO	N								16	
Note (2) Available just as spare unit giving serial number	Г						Version	with Multio	drive boa	rd. Produ	ction just	as spare	part			1	2
								with Custo								2	2
								sion in pro								3	

Auxiliary Units

CD-RS

Compact and smart communication converter

Input RS232 Output RS485 or 422

RS232 connection via a 9 pin connector on front of unit

RS485 or 422 via screw terminals

This converter can be used to interface a computer with CD Automation communicating Thyristor Units.

Code: CD-RS | For more informations see "CD-RS" bulletin

Field Bus Modules

Code: TU-RS485-PDP-BASIC used to convert RS485 Modbus to Profibus DP

For more informations see "TU-RS485-PDP-BASIC" bulletin

Code: TU-RS485-ETH used to convert RS485 Modbus to Ethernet Modbus TCP

For more informations see "TU-RS485-ETH" bulletin

Code: TU-RS485-PNT used to convert RS485 Modbus to ProfiNet

For more informations see "TU-RS485-PNT" bulletin

CD KP-Operator Interface

The CD-KP is designed to be connected with CD 3000E and Multidrive via RS485 communications. The LED display will show Power, Voltage or Current values, all in engineering units.

Any one of these variables can be selected and retransmitted via an isolated output (4-20mA or 0-10V). No need to open the cubicle door and stop the process, an RS485 connector on the front of the unit allows direct connection to a portable PC for easy configuration.

In addition the display unit allows simple diagnostics of fault conditions.

For more informations see "CD-KP" bulletin

This unit is based on a colour touch panel and can be used to be interfaced up to 6 Thyristor units. On front unit is possible to set or to read:

- Load Current in RMS value and Load Voltage
- Power delivered to the load and Power demand
- Digital input Status
- SC = Short circuit on Thyristor
- HB = Partial or total load failure
- Local/Remot, Up/Down
- ullet Trend of the selected variable Ex.Current Voltage for Revo M, Revo CL, CD 3000E, Multidrive
- Language selection

More details on manual

Configuration Software

CD Automation Configurator Software is free of charge.

The thyristor unit leave the factory alredy configured but if is necessary to verify the configuration or to modify it is necessary to have the configurator plus the Cable Kit.

Code: CCA cable + converter.

There is one page very friendly named "Test Unit" from where without instruction is possible to communicate in intuitive mode. Just clicking on what you need.

With CD-RS converter (see above) it's possible to communicate with the Thyristor unit without cable kit.

Code: CD-CONFIGURATOR

Cable Kit

The cable kit on left side is for universal use on CD Automation Thyristor unit including Revo and CD 3000 Familys Type of connector and USB cable as described on the Manual.

- The components of the Kit are:
 2 USB cable
- 1 USB/TTL converter
- 1 adapter with 4 poles
- 1 adapter with 9 pin connector

Code: CCA

AUTOMATIO)

DIN-RAIL mount semiconductor fusing

Protection for your CD 1-2-3 PH Solid state power controllers

For efficient protection of your CD 1-2-3 PH solid state power controller, use semiconductor fuses to ensure a long life.

To safeguard your Power Controllers CD Automation offers Fuse and Fuse Holder correctly sized to protect the Thyristors.

All Fuses should be rated at 25% more than Power Controller rating.

The semiconductor I²t should be 30% less than Power Controller I²t.

Semiconductor Fuses are classified for UL as additional protection for semiconductor.

They are not approved for branch circuit protection.

				CE VERSIO	ON			
		FUSE				FUSE HOLDE	R	
Amp Reating	I ² t (A ² Sec)	Code	Diameter	Length	Code	CD1	CD2	CD3
32	600	FU1038/32A	10,3	38	FFH1038/32A	CD1025	CD2025	CD3025
50	2000	FU1451/50A	14	51	FFH1451/50A	CD1045	CD2045	CD3045
80	6550	FU2258/80A	22	58	FFH2258/80A	CD1060		CD3060
100	13500	FU2258/100A	22	58	FFH2258/100A		CD2075	
125	14000	FU2258/125A	22	58	FFH2258/125A	CD10090	CD2090	CD3090

				cUL VERSION				
		FUSE			FUSE HOLDER	1	THYRISTOR UNIT TYPE	Ē
Amp Reating	I ² t (A ² Sec)	Code	Diameter	Length	Code	CD1	CD2	CD3
32	600	FWC32A10F	10,3	38	FFH1038/32A	CD1025	CD2025	CD3025
50	1800	FWP50A14F	14	51	FFH1451/50A	CD1045	CD2045	CD3045
80	6600	FWP80A22F	22	58	FFH2258/100A	CD1060		CD3060
100	6970	CPURQ27x60/125	22	58	FFH2258/1250A	CD10090	CD2075-CD90	CD3090

Fuse table

					FUSE FOR RE	EVO FAMILY					
Model fuse & Thyristors	RS 1PH	RM 1PH RCL	RS 2PH	RM 2PH	RS 3PH	RM 3PH	RE 2PH	RE 3PH	M 1PH	M 2PH	М ЗРН
Current											
30A	FU1451/40A	FU1451/40A	FU1451/40A	FU1451/40A	FU1451/40A	FU1451/40A					
35A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/50A	20 559 20.160	2x 50 073 06. 100		20 559 20.160	20 559 20.160
40A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/50A	FU1451/40A					
45A							20 559 20.160	2x 50 073 06. 100		20 559 20.160	20 559 20.160
60A	20 559 20.160	20 559 20.160	20 559 20.160	20 559 20.160	2x 50 073 06. 100	2x 50 073 06. 100					
75A							20 559 20.160	2x 50 073 06. 100		20 559 20.160	20 559 20.160
90A	20 559 20.160	20 559 20.160	2x 50 073 06. 100	20 559 20.160	2x 50 073 06. 100	2x 50 073 06. 100					
100A							20 559 20.160	20 559 20.160		20 559 20.160	20 559 20.160
120A	20 559 20.180	20 559 20.180	20 559 20.180	20 559 20.180	20 559 20.180	20 559 20.180					
125A							20 559 20.180	20 559 20.180		20 559 20.180	20 559 20.180
150A	20 559 20.200	20 559 20.200	20 559 20.200	20 559 20.200	20 559 20.200	20 559 20.200	20 559 20.250	20 559 20.250		20 559 20.250	20 559 20.250
180A	20 559 20.250	20 559 20.250	20 559 20.250	20 559 20.250	20 559 20.250	20 559 20.250					
200A							20 559 20.315				
210A	20 559 20.315	20 559 20.315	20 559 20.315	20 559 20.315	20 559 20.315	20 559 20.315					
225A					20 559 20.315	20 559 20.315		20 559 20.315		20 559 20.315	20 559 20.315
280A	2x 20 559 20.200	2x 20 559 20.200	2x 20 559 20.200	2x 20 559 20.200			2x 20 559 20.200			2x 20 559 20.200	
300A					FU450FMM	FU450FMM		FU450FMM			FU450FMM
350A					FU550FMM	FU550FMM		FU550FMM			FU550FMM
400A	FU550FMM	FU550FMM	FU550FMM	FU550FMM	FU550FMM	FU550FMM	FU550FMM	FU550FMM		FU550FMM	FU550FMM
450A			2x FU315FM	2x FU315FM	FU700FMM	FU700FMM	2x FU315FM	FU700FMM		2x FU315FM	FU700FMM
500A	FU700FMM	FU700FMM	2x FU315FM	2x FU315FM	FU700FMM	FU700FMM	2x FU315FM	FU700FMM		2x FU315FM	FU700FMM
600A	2x FU450FMM	2x FU450FMM	2x FU450FMM	2x FU450FMM			2x 450FMM			2x 450FMM	2x 450FMM
700A	2x FU450FMM	2x FU450FMM	2x FU450FMM	2x FU450FMM			2x FU450FMM				
850A									2x FU550FMM	2x FU550FMM	2x FU550FMM
1100A									2x SQB3.800	2x SQB3.800	2x SQB3.800
1400A									2x SQB3.1250	2x SQB3.1250	2x SQB3.1250
1700A									2x SQB3.1250	2x SQB3.1250	2x SQB3.1250
1900A									2x SQB3.1400	2x SQB3.1400	2x SQB3.1400
2100A									2x SQB3.1600	2x SQB3.1600	2x SQB3.1600
2700A									4X SQB3.1100	4X SQB3.1100	4X SQB3.1100

				FUSE FOR CD 3	000 & CUSTOM				
Model fuse & Thyristors	CD 3200 CD 3000S 1PH	CD 3000S 2PH	CD 3000S 3PH	CD 3000M 1PH	CD 3000M 2PH	CD 3000M 3PH	CUSTOM 1PH	CUSTOM 2PH	CUSTOM 3PH
Current									
120A							FU250URB	FU250URB	FU250URB
125A	FEE200	FEE200	2x 100FE	FEE200	FEE200	2x 100FE			
150A	FEE200	URB250	2x100FE	FEE200	URB250	2x 100FE	FU250URB	FU250URB	FU250URB
200A - 210A	URB315	URB315		URB315	URB315		FU315URE	FU315URE	FU315URE
225A			URB315			URB315			
275A		URB315			URB315				
300A	FM350		450FMM	FM350	450FMM	2x 250 URE	2x 250 URE	2x 250 URE	2x 250 URE
350A			550FMM			550FMM			
400A	FMM550	FMM550	FMM550	FMM550	FMM550	FMM550			
450A		2x 315FM	700FMM		2x 315FM	700FMM	FU630 FMM	FU630 FMM	FU630 FMM
500A	700FMM	2x 315FM	700FMM	700FMM	2x 315FM	700FMM			
550A							2x 450 FMM	2x 450 FMM	2x 450 FMM
600A	2x 450 FMM	2x 450 FMM		2x 450 FMM	2x 450 FMM				
650A							2x 550 FMM	2x 550 FMM	2x 550 FMM
700A	2x 550 FMM			2x 550 FMM					
800A							2x 550 FMM	2x 550 FMM	2x 550 FMM
850A									
1100A							2x SQB3.800	2x SQB3.800	2x SQB3.800
1400A							2x SQB3.1250	2x SQB3.1250	2x SQB3.1250
1700A							2x SQB3.1250	2x SQB3.1250	2x SQB3.1250
1900A							2x SQB3.1400	2x SQB3.1400	2x SQB3.1400
2100A							2x SQB3.1600	2x SQB3.1600	2x SQB3.1600
2700A							4x SQB3.1100	4x SQB3.1100	4x SQB3.1100

Note: The internal fuses for CD3000E 2 - 3PH are listed as RE 2PH - 3PH at page 74

The internal fuses for Multidrive 1 - 2 - 3PH are listed as M1PH - M2PH - M3PH at page 74

Amplivect IGBT

Stop to chop voltage with phase angle generating harmonics. Control the voltage adjusting its amplitude with IGBT technology.

Amplivect feature

- Three phase IGBT unit with balanced current input
- One phase output with square waveform
- One phase output with sinussoidale waveform with internal choke
- Amplitude control of output vector
- Short circuit prevention
- Control mode in voltage, current and power
- · Semiconductor internal fuses not necessary
- No downstream transformer to reduce load voltage
- Automatic calculation of load resistance
- · Power load management for multiple units with power limit
- Automatic compensation temperature and aging for SIC elements
- Heather break alarm to diagnostic partial or total failure
- Alarm indication
- External key pad

Technical Specification

- Voltage supply: 3 phase 400V ± 10% 50/60Hz
 Auxiliary voltage: 220V ac
 Output: 3/9/10/21 KW
 EMC filter on input

- Fan cooling
 Communication Std: RS232/RS485 other field bus available
- USBport
- Ethernet
- Read out:
- Load current
- Input line current on the three fases
- Load voltage
- Load power consumption

Analog output:

- Four analog configurable output as 4-20 or 0:10V

Analog input:

- Three analog input

• Digital input/output: - Four input Std 24V dc

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	А	M	V	_	_	_	-	_	_	-	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	OL MOD	E							11	
description				cod		note	descript									code	Note
15A				0 1	5		Voltage									V	
40A				0 4	0		Current									ı	
55A				0 5	5		Power \	/xl								W	
100A				1 0	0												
								& OPTIO	N							12	
MAX VOLTAGE				7			descript									code	Note
description				cod	e r	note	No inter	nal fuse								0	
220V				2													
400V				4			FAN VO									13	
				_			descript									code	Note
VOLTAGE SUPPLY AUX.				8			Fan 220	V								2	
description				cod	e r	note											
230V ac				2			APPRO									14	
				_			descript									code	Note
INPUT				9			CE EM	2								0	
description				cod	e r	note											
0-10V				V			MANUA									15	
4:20mA				Α			descript	ion								code	Note
							None									0	
CONTROL				9			Italian									1	
description				cod	e r	note	English									2	
Amplitude control				T			German	1								3	
							French									4	
							VERSIO									16	
							descript									code	Note
							Ctondor	d								-1	

UVC the IGBT lamp UV control

The UVC unit has been designed to control UV lamp using IGBT technology with continuos voltage to the lamp. In this period the people is very sensitive to reduce power consumption to be able to minimize energy cost and respect the environment reducing CO2.

THE ADVANTAGES ARE:

Lower operation costs

With standby output power at 10% of nominal and with UVC ready to reach in second the 100% power when the product is ready to be dried.

UVC is compact and modular

Unit with possibility to mount side by side or one unit over the other one to save space and money in the construction.

UVC available

At low voltage up to 9 KW and 2000V up to 22 KW with integrated high frequency transformer

Lamp output control

In continuos mode with power regulation from 10 to 100%

UVC feature

- Three phase IGBT unit with balanced current input on the three phase
- One phase output with square waveform or 1 EMC input filter integrated
- One phase output with sinussoidal waveform with internal transformer sized to supply UV lamps up to 2700V
- Amplitude control of output vector
- Short circuit prevention
- Control mode in voltage, current and power
- Semiconductor internal fuses not necessary
- Power load management for multiple units with power limit
- Alarm indication
- External key pad for alarm and read-write parameters
- Multi language instruction and alarm read out

Technical Specification

- Voltage supply: 3 phase 400V \pm 10% 50-60Hz Auxiliary voltage: 220V ac
- Output: 3/9/10/21 KWEMC filter on input

- Fan cooling
 Communication Std: RS232/RS485 other field bus available
- USBport
- Ethernet

• Read out:

- Load current
- Input line current on the three fases
- Load voltage
- Load power consumption

Analog output:

- Four analog configurable output as 4-20mA or 0:10V

Analog input:

- Three analog input

Digital input/output:

- Four input Std 24V dc

Units mounting side by side or one over the other

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	U	V	С	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	OL MODE	E							11	
description				code		ote	descript	ion								code	Note
15A				0 1	5		Voltage									V	
40A				0 4	0		Current									1	
55A				0 5	5		Power \	/xl								W	
100A				1 0	0												
								& OPTIO	N							12	
MAX VOLTAGE				7			descript									code	Note
description				code	e n	ote	No inter	nal fuse								0	
220V				2													
400V				4			FAN VO									13	
							descript									code	Note
VOLTAGE SUPPLY AUX.				8	_		Fan 220	V								2	
description				code	e n	ote											
230V ac				2			APPRO									14	
							descript									code	Note
INPUT				9			CE EM	;								0	
description				code	n	ote	MANUA										
0-10V 4:20mA				V												15	Mata
4:ZUMA				Α			descript	ion								code 0	Note
CONTROL				9			Italian									1	
description				code		ote	English									2	
Amplitude control				T	: 11	ole	German									3	
Amplitude control				- 1			French									4	
							FIEIICH									+	
							VERSIO	N								16	
							descript	ion								code	Note
							Standar	d								1	

Buy our application software

You get CD Automation Know How

100 (Feb. 2)

Application with infrared lamps

CD Automation Thyristor Units are suitable to drive simple and complex Heating Elements. The wide Product Range in terms of performance (5 product families) and Current Range (from 3,5:2700A) offers a product solution for all application requirements.

NORMAL RESISTANCE

In this application, REVO S family up to 700A is normally used.

Over this current we recommend the Multidrive or Custom family up to 2700A.

INFRARED LAMPS MEDIUM AND LONG WAVEFORM

This type of heating elements are controlled as a normal resistance load, providing that the nominal supply voltage is used.

If using medium waveform at a lower voltage than nominal, then this should be treated as short waveform load.

Infrared Short Wave loads can be driven with different types of Firing: Single Cycle, Burst Firing and Phase Angle with Current Limit.

The above graph demonstrates how the inrush current remains high for a longer period if we use phase angle plus current limit, than with single cycle. Single cycle technique is the most used to drive infrared short waveform. During the off time the IRSW elements become cold (due to their low inertia) and when switched ON again there is a peak of current.

This peak of current is a function of the number of burst firing cycles, for this reason the off time must be as short as possible to reduce this current peak. Phase angle firing is not used because the supply voltage is normally less than nominal and therefore the elements never reach the working temperature.

Infrared lamps system architecture

Si-C touch panel

CD Automation has developed many applications dedicated to drive particular loads and one of these application is for Silicon Carbide.

The Philosopy is to use standard thyristor units with serial communication and to implement the control strategy inside the intelligent panel.

This Touch Panel in addition to a CD Automation universal unit able to work with all firing and control mode removing all application risks due to the control type selection.

THIS SOLUTION GIVES MANY ADVANTAGES

- The thyristor units are standard and easy to be found every where
- An external port is available to connect your normally used PLC
- One ethernet port is available on 8 " touch panels
- The human interface is friendly and just feeling few data of thermic project is possible to achive the final configuration

Two different modes to drive SI-C:

- Burst firing with automatic adjustment of power limit
- Phase angle with transfer from voltage to Power control mode

FEATURES

- Automatic configuration and tuning of the thyristor unit
- · Automatic tuning of power control mode VxI
- Message on when to change the elements because are at the end of their life
- Automatic switch from voltage to VxI control mode when the element temperature
- Automatic tuning procedure of heather break alarm to diagnostic partial or total load failure
- Diagnostic of fuse failure and thyristor in short circuit
- Recent and historical curve of following process variable
- Power density W/Cm2

- Power to the load

- Load voltage
- Load current
- Resistance value curve with element new
- Time elapsed from start to actual resistance value

All in line with SANDVIK specifications for a long element life.

These touch panel is available with different features:

- Model 5" in black and white
- Model 5",8",10" and 12" in colour

Below Thyristor units can be connected:

- REVO CL to drive 1 phase unit SI-C elements or 3 Phase open delta or star with neutral
- MULTIDRIVE or 3000E 3PH to drive 3 phase loads in delta or star connection.

Kanthal Super increase resistivity sharply with temperature.

The graph on below show that at ambient temperature the resistance value is very low and increase its value up to 10 times.

To don't oversize in current the Thyristor unit it's necessary to limit the current to the load reducing the voltage with phase angle firing and current limit.

When the resistance value reach a setted value are possible two types of working method that can be selected from HMI:

- Phase angle plus current limit all the time long
- Phase angle plus current limit when the resistance is cold and transfering to delayed Triggering if load is coupled with transformer

If the Kanthal super are coupled directly to the main voltage supply the unit start in phase angle plus current limit when the resistance is hot transfer automatically to burst firing.

This application is typical for cold resistances and CD Automation has developed its own software to drive these types of loads. The size of the HMI available are 5", 8", 10" and 12".

FEATURES

- · Automatic configuration and tuning of the thyristor unit
- Automatic tuning of current control mode I or I² selectable
- Automatic tuning of current limit
- Automatic transfer from phase angle to delay triggering if the load is coupled with a transformer
- · Automatic transfer from phase angle to burst firing with element coupled directly to line supply voltage
- Automatic tuning procedure of heather break alarm to diagnostic partial or total load failure
- Diagnostic of fuse failure and thyristor in short circuit
- Recent and historical curve of following process variable
- Power density W/Cm2

Resistance value curve

- Load voltage
- Load current
- Power to the load

All in line with SANDVIK specifications for a long element life.

Real time clock for furnace maintenance.

BENEFITS

- · Phase Angle used just to reach the working temperature of elements with reduction of harmonics
- High power factor with furnace working in Burst Firing or delayed triggering
- The thyristor units are standard and easy to be found every where
- An external port on HMI is available to connect your normally used PLC
- One ethernet port is also available on touch panel = > 8"

1110 1470 1830 2190 2550 2910 3270 3630 °F

• The human interface is friendly and just inserting few data of thermic project is possible to achive the features listed above.

The Thyristor Unit suitable to drive these type of load are:

- REVO CL to drive 1 phase unit or 3 phase open delta or star with neutral
- MULTIDRIVE CD3000E 3PH to drive 3 phase loads in delta or star connection

Complex heating elements

TRANSFORMER

REVO CL has been designed to drive single phase Transformers. CD3000E 3PH or MULTIDRIVE 3PH are suitable to drive 3 Phase transformers.

All above Thyristor units work in Phase Angle, or in Delayed Triggering if transformer is coupled with normal resistance.

No need to worry which firing type to order, you can select phase angle or delayed triggering directly from the front keypad removing any application risks and giving you piece of mind.

REVO PC & MULTIDRIVE

MULTIDRIVE 2PH SYNCHRONIZATION THROUG SYNC INPUT

Glass industry

This is a cabinet to control the Bath Furnace in a Float glass Plant. CD Automation specialises in this type of application, supplying the complete cabinet package including the Thyristor units. With its own technical department, CD Automation can study the process & system, produce the hardware & software, fully commission the start up process and provide a first class service during the Float Life.

Typical systems can have between 30 and 35 zones, each one having a power range from 100 to 150 KW.

CD Automation product normally used is MULTIDRIVE 3PH.

An example of a control Zone is shown below. In addition CD Automation can offer REVO PC. This powerful unit with its unique algorithm will minimize energy cost by controlling synchronisation and power limit of each zone.

CD Automation can also supply product and specialist know how for the following applications in the Glass Industry.

- Boosting power control
- Tin furnace power control
- Power control of continuous annealing furnace

TIPICAL LOOP FOR GLASS INDUSTRY WITH ETHERNET MODBUS/TCP

MERCHANICAL CO.

Glass tempering furnaces

CD Automation has acquired experience in this type of application where there are up to 60 zones and where a sophisticate control of the power is necessary to don't create glass molecolar tensions.

Following feature are normally used:

- Power set point via communication
- Power feed back to compensate voltage fluctuation
- Very fast Burst Firing to increase the thyristor and resistance life

In applications like oscillating and continuous furnaces the power involved it's a lot and is necessary to use the power load management using REVO PC that gives following advantages:

- Power picks elemination with istantaneous values close to average value
- Power factor close to one due to zero crossing firing
- REVO PC keeps your istantaneous power within the limit of your electricity supply contract
- Calculation of instant current and RMS voltage current and power
- Calculation of resistance with heather break alarm for partial or total load failure and thyristor in short circuit

UV lamps

With REVO CL the power is under control

ELECTRONIC CONTROL

CD Automation has developed its own system based on HMI.

Where inside there is a standard software to drive UV lamps.

REVO CL thyristor unit is in communication with the touch panel.

The electronic controll for UV Lamps is becoming every day more and more used for application in printing machines and dry painting on wood.

The feature Voltage/Current is a function depending on type of gas and on the working temperature.

The right power management of the lamp gives the advantages of lower power consumption and thus a lower CO2 emmission.

REVO CL is able to reduce the power at stand by value when the material is not there and to increase it when the production start again.

This unit have a very sophisticate alghoritm able to switch on the lamp at constant current and to avoid the switch off while it is working.

When a transformer is provided to switch on the lamp the REVO CL is designed to drive it at constant current.

These transformers are special designed and with a secondary voltage of KV.

After the starting procedure that can take many seconds an input signal set the lamp emission.

Via communication or via an analog input is possible to adjust it from 30% to 100%.

These percentage depends on lamp type.

REVO CL is a digital thyristor unit thus the customer avoid wire many cables.

If customer want to implement its own software in the Panel CD Automation can do it.

经现代分

Plastic machinary application

CD Automation is the market leader for this type of application and has thyristor product specifically designed for this market.

CD Automation has extensive knowledge and experience in plastic machinery systems. CD REVO up to 40A has been designed for this application.

What REVO offers?

- Modularity of its components
- Configurability that allows increased product performances

REVO's "value add" capable of saving 50% of labour and space. Innovation based on knowledge of process.

International assistance from around the world via trained distributors and joint venture multi-national companies.

REVO is a system not a simple product.

Includes all key components of a typical control zone.

REVO TC is an integrated product including, fuse & fuse holder, solid state relay, current transformer and temperature control, all in one.

REVO in SSR version can be mounted side by side on large heat sinks giving high density solutions.

HOT RUNNER APPLICATION

Max 64 zones with option to set temperature controllers locally, or via remote set point. Includes a boost function to give a programmed max set point to all zones to clean the mould. Heater Break alarm on each zone available as an option.

Option of standard controllers as shown in photo or a multiloop system with an operator interface on front cabinet door with 5,25" or 12" TFT colour touch screen. For further information ask for our brochure and application notes.

OTHER APPLICATION IN PLASTIC MACHINARY THERMOFORMING

- Thermoforming
- Power control on blow moulding
- Power control on injection moulding machinery

Tipical plastic machinary architecture

Soft Starter family STB - STO - STE

Control types available

VOLTAGE RAMP (torque ramp)

Soft Starter start from a setted initial voltage, and ramp up to the nominal one in a setted time.

In addiction on all family products is possible to start high friction load with kickstart that gives to the motor for 100÷300 msec 80% of full voltage, without current limit.

When is started, the motor reach the full speed and remain there, up to when stopped and it can reach zero speed by inerthia or via setted ramp down

As an option is also available the dynamic braking

CURRENT RAMP

Soft starter start from a setted initial current and ramp up to the nominal value in a setted time. This type of control is available on STO+STE family

CURRENT LIMIT

This parameter sets the current at which to start.

This value depend on the application and must not exceed the soft starter sizing (see on next two pages).

INITIAL CURRENT LIMIT

This parameter sets the initial start current for the current ramp mode.

MOTOR PROTECTION

Inside STO and STE soft starter families, has been implemented electronic motor thermal protection.

The curves are rapresented on right side, and basically one is for normal sevice, and the other one for severe service.

This is an overload relay.

Soft Starter Model

FUNC	CTIONALITY	STB (Basic)	STO (Overload Relay)	STE (Enanched)
	CI.			
	Ramp up voltage	•	•	•
	Ramp up current		•	•
TART / STOP	Ramp down	•	•	•
	Stop by coasting	•	•	•
	Internal bypass relay up to 200A	•	•	•
	Current limit facility		•	•
	Torque control		•	•
	Constant current control		•	•
ONTOL MODE	kick start 80% 100 msec	•	•	
	kick start 80% 200 msec	•	•	
	kick start 80% 300 msec	•	•	
	kick start 80% adjustable msec			•
	Start time out of limit	•	•	•
	Phase loss	• (1)	•	•
	Motor overload		•	•
	Phase sequence		•	•
	Unbalanced current		•	•
	Power circuit failure	•	•	•
	Thyristor in short circuit	•	•	•
	Supply frequency out of limits	•	•	•
ROTECTION	Istantaneous peak current		•	•
	Bypass overload		•	•
	Overvoltage	•	•	•
	Overcurrent		•	•
	Undercurrent protection (pump)		•	•
	Overtemperature on heatsink		•	•
	Overload relay and curve selection		•	•
	PTC motor termistor		•	•
	Communication failure		•	•
	Modbus RTU Std		•	•
	Modbus TCP (option)		•	•
OMMUNICATION	Profibus DP (option)		•	•
OWNIVIONICATION	Profinet (option)		•	•
	USB device Std		•	•
	Devicenet (option)			
SOFTWARE APPLICATIONS	Pump application	•	•	•

⁽¹⁾ Protection attive during ramp up

國際和企

Main features

	SOFT STARTERS MAIN FEATURES	STB	STO	STE
	Current range	6:200A	>32:200A	>32:200A
GENERAL	3 wire motor connection	•	•	•
	Internal bypass St. from 6 to 200A	•	•	•
	Supply voltage 3x200V; 3x440V Max (+10:-15%) ac	•	•	•
	Supply voltage 3x200V; 3x575V Max (+10:-15%) (just for >32A)	•	•	•
MAIN SUPPLY VOLTAGE	Auxiliary voltage 110-240V (+10 : -15%) ac (just for >32A)	•	•	•
WAIN SOFFET VOLTAGE	Auxiliary voltage 380-440V (+10 : -15%) ac (just for >32A)	•	•	•
	Auxiliary voltage 24V ac/dc (+20 : -20%) ac (just for >32A)	•	•	•
	Voltage frequency 45 to 66 Hz	•	•	•
	Start/stop optoisolated input + 24V dc start with Dip 4 off (≤32A)	•		
	Start with power up with Dip 4 on (≤32A)	•		
DICITAL INDUITS	Start optoisolated input + 24V dc	•		
DIGITAL INPUTS	Stop optoisolated input + 24V dc	•		
	Configurable digital input 1		•	•
	Configurable digital input 2		•	•
	Ramp up 0 to 15 sec adjustable	•	•	•
	Ramp down 0 to 15 sec adjustable	•	•	•
	Initial torque 0 to 80%	•	•	•
	Current limit >32A		•	•
CONTROL	Motor full load current >32A		•	•
	Overload relay >32A		•	•
	Digital in/out >32A		•	•
	Phase sequence enable >32A		•	•
	Exceded max start time >32A		•	•
	Run green led slow blinking ready to start	•	•	
	Run green led fast blinking ramp active	•	•	
ED CTATUC ALADAA INIDICATIONI	Run green led on end of ramp	•	•	-
LED STATUS ALARM INDICATION	Alarm red led off no alarm	•	•	-
	PW green on power supply available	•	•	-
	PW green on power supply not available	•	•	
	Rotary switch	•	•	
(C)(D)(D	Colour touch panel with alarm message in different language			•
KEYPAD	Read out of voltage, current, power etc			•
	Logging and trend			•
	Modbus RTU Std		•	•
	USB device Std		•	•
COMMUNICATION	Modbus TCP (option)		•	•
COMMUNICATION	Profibus DP (option)		•	•
	Profinet (option)		•	•
	Devicenet (option)		•	•
	Protection IP20	•	•	•
	Current sizing as in TAB for 40°C for temperature over see derating	•	•	•
ENVIRONMENTAL	Operating temperature -10 to 60°C max	•	•	•
	Humidity 5% to 95% relative humidity	•	•	•
	Conformal coating (option)	•	•	•
RELAY OUTPUT	2 Relay output free voltage contact (500mA, 125 Vac)	• (1)	•	•

^{(1) 1} Relay ≤32A

Soft Starter Selection

- Start from application table on the right Example: Agitator 50A the suggested start current is 4 times FLC (full load current 50A)
- Select model from table at the bottom page
- Go on column HEAVY (4) and nominal current of your motor must be equal or less than the value (In our example is 55A)
- If selected model is STB your soft starter is STB075
- If you want to receive Soft Starter already configured follow the code below:

APPLICATION	3 ln	3,5 ln	4 In	4,5
AGITATOR			•	
ATOMIZER			•	
BANDSAW				(
BOTTLE WASHER	•			
CENTRIFUGAL PUMP		•		
CENTRIFUGE				
CHIPPER				(
CIRCULAR SAW		•		
CONVEYOR BELT				
CONVEYOR SCREW			•	
CRANE TRANSLATOR			•	
CRUSHER CONE		•		
CRUSHER JAW				
CRUSHER ROTARY		•		
CRUSHER VERTICAL IMPACT		•		
DEBARKER		•		
DRYER				(
DUST COLLECTOR		•		
EDGER		•		
ELEVATOR	•			
FAN AXIAL CLAMPED		•		
FAN AXIAL UNCLAMPED				
FAN CENTRIFUGAL CLAMPED		•		
FAN CENTRIFUGAL UNDAMPED				(
FAN HIGH PRESSURE				(
GRINDER		•		
HYDRAULIC POWER PACK		•		
LOADED PISTON COMPRESSOR				
MILL				
MILL BALL				
MILL HAMMER				
MIL ROLLER				
MIXER				
MONORAILS			•	
PALLETISER				
PLANER		•		
POSITIVE DISPLACEMENT PUMP			•	
PRESS		•		
PUMPS BORE	•			
REPULPER				
ROLLER CONVERYOR		•		
ROTARY TABLE			•	
SANDER			•	
SCREW COMPRESSOR			•	
SCREW CONVEYOR			_	-
SEPARATOR SEPARATOR			_	
SHREDDER				
SLICER				
SLURRY PUMP	•			
TUMBLER				-
	-		•	
UNLOADED PISTON COMPRESSOR		:	•	-

SERVIC	Œ	LIGHT	MEDIUM	HEAVY	SEVERE
Start Current (Mult	liple of FLC*)	3	3,5	4	4,5
		AC53b 3,0 -10:350<1000m	AC53b 3,5 -15:345<1000m	AC53b 4,0 -20:340<1000m	AC53b 4,5 -30:340<1000m
MODEL		Rating at 40° C for 3xFLC	Rating at 40° C Amps	Rating at 40° C Amps	Rating at 40° C Amps
STB	006	6A	5A	4A	3A
STB	012	12A	11A	9A	7A
STB	022	22A	20A	17A	13A
STB	032	32A	29A	25A	19A
STB - STO - STE	043	43A	40A	35A	29A
STB - STO - STE	050	50A	44A	38A	30A
STB - STO - STE	060	60A	55A	48A	37A
		AC53b 3,0 -6:590<1000m	AC53b 3,5 -15:585<1000m	AC53b 4,0 -20:580<1000m	AC53b 4,5 -30:570<1000m
STB - STO - STE	075	75A	65A	55A	47A
STB - STO - STE	100	100A	88A	75A	61A
STB - STO - STE	140	140A	123A	107A	90A
STB - STO - STE	170	170A	145A	122A	97A
STB - STO - STE 200 200A		190A	160A	135A	

^{*}FLC Full load current

《京教教》

STB Soft Starter

SOFT STARTER OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE AC MOTOR FROM 6A TO 200A NOMINAL WITH INTERNAL BYPASS CONTACTOR.

Technical Specification

- STB family has 3 adjustaments:
- Initial start voltage
- Start ramp time
- Soft stop ramp time
- Kickstart 100 to 300 msec can be configured by DIP switch
- DIN rail or fixing hole mounting: from 6 to 32A
- Fixing hole mounting from 42 to 200A

 RESET
 STATUS

 START
 VOLTAGE

 RAMP TIME

 SOFT STOP RAMP
 TIME

 SOFT STOP RAMP
 TIME

DIMENSIONS					
Wide	30 mm				
Deep	130 mm				
Height	122 mm				

DIMEN	ISIONS
Wide	52 mm
Deep	130 mm
Height	122 mm

DIMENSIONS					
Wide	93 mm				
Deep	144 mm				
Height	253 mm				

DIMEN	ISIONS
Wide	186 mm
Deep	144 mm
Height	253 mm

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16	
ORDERING CODE	S	T	В	_	_	_	-	_	_	_	_	_	_	_	_	_	_	
CURRENT				4 5	6		CONTR	OL MODE								11		
description				code	no	ote	descripti	on								code		
6 Amp full load current (FLC)				0 0	6		Voltage control mode											
12 Amp FLC				0 1	2													
22 Amp FLC				0 2	2		OPTION	& FUSE										
32 Amp FLC				0 3	2		descripti	on								code	Note	
48 Amp FLC				0 4	8		No Fuse	·S								0		
60 Amp FLC				0 6	0		External	fuse & fu	se holder							F		
75 Amp FLC				0 7	5													
85 Amp FLC				0 8	5		FAN VO	LTAGE										
100 Amp FLC				1 0	0		descripti	on								code	Note	
140 Amp FLC				1 4	0		No fan up to 32A									0		
170 Amp FLC				1 7	0													
200 Amp FLC				2 0	0		APPROVALS							14				
							descripti									code	Note	
MAIN SUPPLY VOLTAGE				7			CE EMC								0			
description				code	no	ote												
3x200V +10:-15%				2			MANUAL									15		
3x400V +10:-15%				4			description								code	Note		
3X575V +10:-15%				6			None							0				
							Italian									1		
VOLTAGE SUPPLY AUX.				8			English									2		
description				code note			German											
No auxiliary voltage supply unit ≤32A				0			French											
	Auxiliary voltage 110-240V (+10 : -15%) ac (just for >32A)			1			Spanish							5				
Auxiliary voltage 380-440V (+10 : -15%) ac (just fo	or >32A)			2														
Auxiliary voltage 24V ac/dc (+20 : -20%) ac (just for	or >32A)			3			VERSIO									16		
							descripti									code	Note	
INPUT				9			Standard	d version								1		
description				code	e no	ote												
Start with power up				1														
Start/stop optoisolated + 24V			2															
OVERLOAD RELAY				10														

STB Control Panel

STO Soft Starter

SOFT STARTERS OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE AC MOTOR FROM 48A TO 200A NOMINAL WITH INTERNAL BYPASS CONTACTOR.

0

Technical Specification

- STO family rotary adjustaments on front unit:
- Initial start voltage
- Start ramp time
- Stop ramp time
- Kickstart 100, 200 or 300 msec can be configured by DIP switch
- Internal electronic overload relay
- Hole mounting from 42 to 200A fixing
- Modbus RTU standard
- USB device standard
- Modbus TCP option
- Profibus DP optionProfinet option
- Devicenet option

OFF= No overload protection NOTE: Trip class must be set to match installation limitations

Motor FLC

STO 048 : STO 100

STO 140 : STO200

DIMENSIONS					
Wide	93 mm				
Deep	144 mm				
Height	253 mm				

DIMEN	ISIONS
Wide	186 mm
Deep	144 mm
Height	253 mm

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	S	Т	0	_	_	_	-	_	_	_	_	_	_	_	_	_	_
CURRENT				4 5	6		CONTR	OL MOD	E							11	
description				cod	е	note	descrip	tion								code	Note
48 Amp FLC				0 4	8		Automa	tic contro	l mode							0	
60 Amp FLC				0 6	0												
75 Amp FLC				0 7	5		OPTIO	N & FUSE								12	
85 Amp FLC				0 8	5		descrip	tion								code	Note
100 Amp FLC				1 0	0		No Fus	es								0	
140 Amp FLC				1 4			Externa	I fuse & fu	use holde	r						F	
170 Amp FLC				1 7													
200 Amp FLC				2 0	0		COMM	JNICATIO	N							13	
							descrip									code	Note
MAIN SUPPLY VOLTAGE				7			Modbus TCP										1
description				cod	е	note	Profibus DP					R					
3x200V +10:-15%				2			Profinet						Р				
3x400V +10:-15%				4			Devicer	net								D	
3x575V +10:-15%				6													
							APPRO									14	
VOLTAGE SUPPLY AUX.				8			description							code	Note		
description				cod	е	note	CE EMC							0			
No auxiliary voltage				0												15	
Auxiliary voltage 110-240V (+10 : -15%) ac (ju				1			MANUAL										
Auxiliary voltage 380-440V (+10 : -15%) ac (ju				2			description										Note
Auxiliary voltage 24V ac/dc (+20 : -20%) ac (ju	st for >32A)			3			None										
							Italian									1	
INPUT							English									2	
description				cod	e	note	German						3				
Start with power up				1 2			French							4			
Start/stop optoisolated + 24V							Spanish							5			
OVERLOAD RELAY				10			VERSIO) N								16	
description				cod		note								code	Note		
Overload relay				1	E	note	description Standard version									1	Note
Overioau relay				1			Sianda	u version								- 1	

Note (1) Modbus RTU and USB port standard

STO Control Panel

STE Soft Starter

SOFT STARTERS OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE MOTOR FROM 48A TO 200A

Technical Specification

- Color touch panel for an easy human interface
- Special vector control
- Message and information, front display panel in different languages
- Voltage Current and Power available
- Trend of electrical variable
- Two configurable digital input
- Two configurable digital Output
- Most popular FieldBus*:

ModBus RTU standard

USB port standard

ModBus TCP available as option

Profibus DP available as option

Profinet available as option

Devicenet available as option Ethercat available as option

EtherCAT.

Ethernet IP available as option

Powerlink available as option

EASY TO USE TOUCHSCREEN

DIMENSIONS						
Wide	93 mm					
Deep	144 mm					
Height	253 mm					

STE 140 : STE200

DIMENSIONS								
Wide	186 mm							
Deep	144 mm							
Height	253 mm							

	1	2	3	4	4	5		6		7	8	9	10	11	12	13	14	15	16	
ORDERING CODE	S	T	E		-	_		_	-	_	_	_	_	_	_	_	_	_	_	
CURRENT					5	6			CONTR	ROL MOD	E							11		
description					code		note	9	descrip	tion								code	Note	
48 Amp FLC				0	4	8			Automa	tic control	mode							0		
60 Amp FLC				0	6	0														
75 Amp FLC				0	7	5			OPTIO	N & FUSE								12		
85 Amp FLC				0	8	5			description									code	Note	
100 Amp FLC					0	0				No Fuses										
140 Amp FLC				1	4	0			Externa	External fuse & fuse holder										
170 Amp FLC				1	7	0														
200 Amp FLC				2	0	0			FAN V	OLTAGE								13		
									descrip	tion								code	Note	
MAIN SUPPLY VOLTAGE					7				No fan									0		
description					code		note	9												
3x200V +10:-15%					2				APPRO									14		
3x400V +10:-15%					4				descrip									code	Note	
3x575V +10:-15%					6				CE EM	С								0		
								_												
VOLTAGE SUPPLY AUX.					8				MANU									15		
description					code		note	9	descrip	tion								code	Note	
No auxiliary voltage					0				None									0		
Auxiliary voltage 110-240V (+10 : -15%) ac (just for					1				Italian									1		
Auxiliary voltage 380-440V (+10 : -15%) ac (just for					2				English									2		
Auxiliary voltage 24V ac/dc (+20 : -20%) ac (just fo	r >32A)				3				Germa									3		
									French									4		
INPUT					9				Spanisl	h								5		
description					code		note	9												
Start with power up					1				VERSI									16		
Start/stop optoisolated + 24V					2				descrip									code	Note	
									Standa	rd version								1		
OVERLOAD RELAY					10															
description					code		note	9												
No everload relev					4															

