

We are delivering Real Cost Benefits

Our facility in Legnano for thyristor unit production

Our facility in Cantalupo for IGBT unit production and motor soft starters

CD Automation was founded in 1987 with the clear strategy of becoming a leading supplier of quality industrial automation products to the Italian market．
Key to this success was the formation of a sales team educated from a strong technical background．
The philosophy was simple；provide product \＆application experts able to work in partnership with the customer to find the right solution．

In 1990 CD Automation began its development of thyristor power controllers and quickly became the world wide market leader in using microprocessor based technology including RS485 communication．

CD Automation now boasts the most comprehensive power control device range on the market today
The extensive range is capable of accurately controlling a wide spectrum of electrical loads up to 3000 kW ，from simple single－phase heaters up to complex high temperature－coefficient three－phase load．

Technical Service

CD Automation has invested heavily in computerised testing equipment \＆state－of－theart production equipment
All products are individually testing including full functional，to improve quality and product reliability
Our help desk service is available 10 hours per day with ex－stock delivery for spare parts． Remote service via Internet is also available for thyristor units with RS485 communications．

Our facility in Aimer，for production dedicated to India and fareast．
Our facility in East Sussex，England．

Index

Introduction	8
Revo Family Model	12
Application Guide	14
Feature Comparison	16
Sizes and Dimensions	18
Revo CL	20
Revo SSR - Revo SX	22
Revo S	25
Revo M	28
CD 3000E	31
Multidrive	33
Revo TC	36
Revo PC	46
Diode Bridge	52
SCR Bridge	54
Custom Family Model	56
Feature Comparison	58
Sizes and Dimensions	60
CD3200 - CD3000	62
Custom	69
Auxiliary Units	72
Fuse	73
IGBT	76
Applications Software	81
Infrared Lamps - Touch Panel - Complex Heating - Glass - UV Lamps - Plastic	82
Soft Starters	92

REVO

s it now time for innovation?

The industrial world has changed beyond recognition yet the temperature control zone has been left almost un-touched, using the same wiring and mounting methods for the controller, solid state relay, fuse \& fuse holder, current transformer etc.
Our idea is bring the temperature control the 21 st Century.
he new REVO is THE solution for today's modern industrial sector

What REVO offers?

Modularity of its components.
Configurability that allows increased product performance.
REVO's 'value-add' capable of saving 50% of labour and space.
Innovation based on knowledge of process.
International assistance from around the world via trained
distributors and joint venture multi-national companies.
Dynamic organization with total customer flexibility at the core of its philosophy.

REVO is a system not a simple product

Includes all key components of a typical temperature control zone
Modular system that is fully configurable satisifying the most complex applications.
Wiring \& mounting accessories included.
Designed as a total block of automation.
Muti panel or PC communications capability as standard.
Multi power management (MPM) to reduce total peak current, optimising power
factor \& saving costs.

Why choose REVO?

We designed a superior product

With the market place becoming more competitive we had a choice to make. Design a product a little cheaper but possibly not as good, or design a new innovative product where its added value is clear for all to see. We chose the latter, in line with our long-term philosophy.

No compromise

Heatsink and thyristor junctions generously sized to guarantee a long life for the thyristor unit

- Units working at low junction thyristor temperature with 20\%
margin on max temperature
Strong connection design between the block terminal and thyristor semiconductor connection allows for generous sizing
All the copper connections treated against oxidation
- Rugged construction for electronic and plastic parts
- Protection against over voltage

Estimated Powercycles of AL wire bonded dies

	dT	$\mathrm{Tj}_{\mathrm{j} \max _{100^{\circ} \mathrm{C}} \mathrm{C} \mathrm{C}}$	$110^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$	$130^{\circ} \mathrm{C}$	$140^{\circ} \mathrm{C}$
Tj start ${ }^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	248.000				
	$70^{\circ} \mathrm{C}$	320.200	110.000			
	$60^{\circ} \mathrm{C}$	464.000	145.500	51.100		
	$50^{\circ} \mathrm{C}$	782.000	216.000	69.100	24.800	
	$40^{\circ} \mathrm{C}$	1.600.000	372.000	105.000	34.100	12.500
SSR	$30^{\circ} \mathrm{C}$	4.800.000	793.000	184.000	52.50	17.500
Single Cycle	$20^{\circ} \mathrm{C}$	25.400.000	2.400 .000	400.000	94.000	27.500
			12.800.000	1.200 .000	209.000	50.000
				6.700 .000	645.000	112.000
					3.600.000	353.000
						2.000.000
		CD Automation	CD Automation			-MMPETITORS
		CD predicted life working in Single Cycle	CD predicted life whith SSR Input and ZC Firing.		of com	cted life of majority rking at $130^{\circ} \mathrm{C}$ with Input and ZC firing

Save space = Save money

An innovative process solution that will dramatically save wiring \& labour

With a reduction of 50% space, it's easy to save hundreds off the cabinet price.

Left Side (Traditional)
Mounted on the baseplate are a Fuse \& Fuseholder, 40A Solid State Relay and a Current Transformer

Right Side (Innovative)
Mounted on the same baseplate are two Relay 40A units, each
having the same components as the traditional unit.
This simple example demonstrates a 50% saving of panel space.

The new Revo S family

Can be put together with little technical knowledge

- SSR Solid State Relay with Zero Crossing
- SSR Solid State Relay + Fuse \& Fuse Holder
- SSR Solid State Relay + Fuse \& Fuse Holder + Current Transformer
- Different versions with or without heatsink
- Single and three phase thyristor units

The new Revo $\mathbf{M}=$ Revo $\mathbf{S}+$ Drive \mathbf{M}
The addition of Drive M transforms a simple unit into a sophisticated unit capable of the following additional features - Universal inputs accepting all standard signals - Universal firing including Zero Crossing, Burst Firing - Single Cycle, Delayed Triggering and Phase Angle - Universal Feed Back (Voltage, Current and Power) - RS485 Communication standard field bus available as options

OPTIONS

- Heater Break Alarm for partial or total load failure

Thyristor short circuit failure

Innovative

Key benefits include:

- Space reduction of 50%, abour reduction of 1 hour per control zone, high reliability
- If one zone fails a non-technical user can substitute a second within minutes

Glossary

Zero Crossing ZC
ZC firing mode is used with the logic output from a temperature controller and so the thyristor operates like a contactor. The cycle time is performed by the temperature controller. Zero Crossing minimizes interferences as the thyristor unit switches ON-OFF at zero voltage.

$\xrightarrow[\text { SSR FROM CONTROLLER }]{\rightarrow}$

Burst Firing BF

This firing is performed digitally within the thyristor unit at zero volts, producing no EMC interference. Analogue input is necessary for BF and the number of complete cycles must be specified for 50% power demand. This value can be between I and 255 complete cycles, determining the speed of firing. When 1 is specified, the firing mode becomes Single Cycle (SC).

$\xrightarrow[\square]{\text { an }}$
$\square 1 \square^{1}$
$\square-\square$
Soft Start + Burst Firing now availabe as an option.

Single Cycle SC

SC is the fastest zero crossing switching method. At 50% input signal, one cycle is ON and one cycle is OFF. At $75 \%, 3$ cycles are ON and one cycle is OFF. If power demand is 76% the unit performs the same as for 75% but every time the unit switches ON the microprocessor divides $76 / 75$ and memorises the ratio. When the sum is one the unit delivers one cycle more to the load. With this firing it is necessary to have analogue input.

Delayed Triggering DT
Used to switch the primary coil of transformers when coupled with normal resistive loads (not cold resistance) on the secondary, DT prevents the inrush current when zero voltage (ON-OFF) is used to switch the primary. The thyristor unit switches OFF when the load voltage is negative and switches ON only when positive with a pre-set delay for the first half cycle.

Phase Angle PA

PA controls the power to the load by allowing the thyristor to conduct for part of the AC supply cycle only. The more power required, the more the conduction angle is advanced until virtually the whole cycle is conducting for 100% power. The load power can be adjusted from 0 to 100% as a function of the analogue input signal, normally determined by a temperature controller or potentiometer, PA is normally used with inductive loads.

A^{v}

$a \rightarrow a^{n} a \xrightarrow[T]{\text { LOAD SUPPLY }}$

Feedback/Control Mode

Supply voltage fluctuations changes the power to the load. To overcome this effect the voltage supplied to the load is measured and compared with the power demand from the controller.
The error signal is used to automatically hold the power at the value requested.

Three types of control mode are available:

- Voltage Control Mode, where the input signal is proportional to the voltage output (voltage f/b).
- Current Control Mode, where the input signal is proportional to the current output (current $f / b)$.Power Control Mode, where the input signal is proportional to the power output (power f / b).
- As an option it is possible to transfer control mode from voltage to power via a simple digital command.

What our customers want?

They want a positive experience with our total solution, not just a cheap price!

Knowledgeable Sales Team

We have a team of sales engineers focused on core business products only. An expert at no cost, not an engineer with a big catalogue and little product knowledge, will welcome customers. Easy access to engineers when you need a special performance project.

Fast Service
Excellent pre sales and after sales service including engineering support.

Easy to do business with us
Fast reaction to your enquiry, short lead times, timely production of order acknowledgement, invoices etc.
Catalogues \& manuals of all our products plus configuration software, available free of charge from our web-site. Our people are always welcoming to our customers.

Digital Documentation on www.cdautomation.com

- Bulletins
- Manuals
- Applications
- Help desk

Guide to family model as function of price

REVO family model from 30 to 2400 A

Custom family model from 10 to 2400A

Note: On graphic above it's possible to see the comparison in term of prices between the different families and the different models, As a reference has been taken the price of Revo S 1 PH and we have assigned to it a conventional value of 100 al the other prices are multiple of it and value of a model is the average value of different current rating.

HB Alarm for partial or total load failure.

Application guide for Thyristor unit selection

APPLICATION GUIDE	LOAD TYPE	MODEL	CURRENT RANGE	N．OF UNITS	PHASE CTRL
	Normal resistance infrared medium and long waveform	Revo SSR	It depends on heat sink	1	1
		Revos IPH	30－700A	1	1
		Custom IPH	300－2400A	1	1
	Quartz lamp infrared waveform	Revo M IPH	35－700A	1	1
		Revo CL	35－700A	1	1
	Molibdenum，Tungstenum， Superkanthal，Platinum，	Revo CL	35－700A	1	1
	Silicon carbide elements	Revo M IPH	35－700A	1	1
		Revo CL	35－700A	1	1
	Transformers coupled with normal resistance	Revo M IPH	35－700A	1	1
	Transformers coupled with cold resistances（kanthal super）	Revo CL	35－700A	1	1
－	Normal Resistance	Revos 2PH	30－700A	1	2
		Revo M 2PH Multidrive 2PH	30－700A 1000－2400	1	2
	Normal Resistance	Revo S 3PH	30－500A	1	3
		Revo M 3PH	30－500A	1	3
		Custom 3PH	150－2400A	2－3	3
	Silicon carbide elements	CD 3000E 3PH Multidrive 3PH	35－500A 35－2400A	1	3
		Revo M 3PH	30－500A	1	3
	Molibdenum，Tungstenum Super Kanta Platinum，Quartz lamp infrared short waveform	CD3000E 3PH	35－500A	1	3
		Multidrive 3PH	25－2400 A	1	3
	Three phase transformer	CD3000E 3PH	25－500A	1	3
		Multidrive 3PH	25－2400A	1	3
	Three phase normal load resistance with open delta connection	Revo S 3PH	30－500 A	1	3
		Revo M 3PH	30－500 A	1	3
		Custom 3PH	150－2400A	1	3
	Cold resistance	Revo CL	30－700A	3	3
		$\begin{gathered} \text { CD3000E } \\ \text { Multidrive } 3 \text { PH } \\ \hline \end{gathered}$	$\begin{aligned} & 35-500 \mathrm{~A} \\ & 35-2400 \mathrm{~A} \end{aligned}$	1	3

SUGGESTED FIRING MODE FOR YOUR APPLICATIONS						other features					SIIING		note
zc	2C	sc	BF	BF Simply	S＋BF	DT	PA		c	Control	v	1	

REVO feature comparison

	Description	Revo CL	Revo SSR	Revo S IPH	Revo S 2PH	Revo S 3PH
	Code	RCL	SSR	RS1	RS2	RS3
	Max volage 480V	－	－	－	－	－
	Max volage 600 V	－	－	\bullet	－	－
	Max volage 690V	$\bullet>280 \mathrm{~A}$		－＞280A	－＞280A	－＞225A
	Single phase	－	－	－		
	3 phase load star no neutral or deta				－	－
	3 Phase load star with neutral					－
	3 phase load open deta	－				－
	SSR 4．30VDC	\bullet	－	－	－	\bullet
	4.20 mA	－	0	0	0	\bigcirc
	$0: 10 \mathrm{Vdc}$	－	0	\bigcirc	\bigcirc	\bigcirc
	10 K potentiometer	－				
	Communication command	－				
$\begin{aligned} & \text { U } \\ & \text { 皆 } \end{aligned}$	Zero cossing		－	－	－	－
	Single ade					
	Burst fing			0 （3）	0 （3）	0 （3）
	Soft stat＋bustst fing					
	Phase angle	－				
	Sott tatat＋phase angle	\bullet				
	Delayed tiggeeing＋bust fring	－				
	Votage	\bigcirc				
	Square Curent	－				
	Curent	－				
	Voltage X current（power）	－				
	Voltage to power tranfer	－				
	Extemal control mode	－				
흥	Intemal curent linit	\bullet－ 1 ）				
	Heater break＋thyistor short circuit	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
	Integrated fixed fuses	$\bullet>40 \mathrm{~A}$		－$>40 \mathrm{~A}$	$\bullet>40 \mathrm{~A}$	$\stackrel{\text {－}}{ } \times 40 \mathrm{~A}$
	Fuse \＆fuse holder	$\leq 40 \mathrm{~A}$				
	Flat wining terminal		0 （2）	0 （2）	0 （2）	0 （2）
岂	R5485 with modus protocol	－				
	Profibus DP，ethemet	0				
	Frontal key pad	－				
	PC progiammable＋USBlTL conv．	－				
	Easy Download					
\bigcirc	Andlogue input／output（4）	1／1				
	Digital input／output	2／1				
$\begin{aligned} & \text { 鿖 } \\ & \text { 3 } \end{aligned}$	CURRENT	SIIE	SIIE	SIZE	SIIE	SIIE
	30		SROSRI	SR3．SR6	SR4．SR7	SR5．SR8
	35	SR9		SR3．SR6	SR4．SR7	SR5．SR8
	40	SR9		SR3．SR6	SR4．SR7	SR5．SR8
	45					
	60	SR12		SR12	SR15	SR16
	75					
	90	SR12		SR12	SR15	SR16
	100					
	120	SR15		SR15	SR16	SR17
	125					
	150	SR15		SR15	SR16	SR17
	180	SR15		SR15	SR16	SR17
	200					
	210	SR15		SR15	SR16	SR17
	225					S13
	280	59		59	510	
	300					S14
	350					S14
	400	512		512	S14	S14
	450				S14	S14
	500	512		512	S14	S14
	600	512		512	514	
	700	S12		S12	S14	
	850					
	1100					
	1400					
	1700					
	1900					
	2100 2700					

Revo M IPH	Revo M 2PH	Revo M 3PH	CD3000E 2PH	CD3000E 3PH	Multidrive 1PH	Multidrive 2PH	Multidive 3PH	
RM1	RM2	RM3	RE2	Re3	м1	M2	M3	
－	－	－	－	－	－	－	－	
－	－	\bullet	－	－	－	\bullet	\bullet	
$\bullet \geq 400 \mathrm{~A}$	$\bullet \geq 400 \mathrm{~A}$	－＞250A			－	－	－	
－					－			
	－	－	－	－		－	－	
		－		－			－	
		－		－			－	
－	－	－	－	\bullet	－	－	\bullet	
－	－	－	－	－	－	－	－	
\bullet	－	\bullet	\bullet	－	\bullet	\bullet	\bullet	
－	－	－	－	－	－	－	－	
－	\bullet	\bullet	\bullet	\bullet	\bullet	－	－	
－					－			
－	－	－	－	－	－	－	－	
\bullet				\bullet	\bullet		\bullet	
－				－	－		－	
－				\bullet	\bullet		\bullet	
－			－	\bigcirc	－	－	\bigcirc	
\bullet	－	\bullet	－	－	－	－	－	
－	－	－	－	－	－	－	\bullet	
－	－	－	－	－	－	－	－	
－	－	\bullet	－	－	－	\bullet	\bigcirc	
－					－	－	－	
				－（1）	－（1）		\bullet（1）	
\bigcirc	\bigcirc	0	－	－	－	－	－	
－＞40A	－$>40 \mathrm{~A}$	－$>40 \mathrm{~A}$	－	－	－	－	－	
S40A	S40A	$\leq 40 \mathrm{~A}$						
				－		－	－	
\bigcirc								
－	－	－	－	－	－	－	－	
－	－	－	－	－	－	－	－	
			－	－	－	－	－	
0／1	0／1	0／1	0／1	1／1	2／4	2／4	2／4	
2／1	2／1	2／1	4／3	4／3	6／4	6／4	6／4	
SIIE	SIIE	SIIE	SIIE	SIZE	SIIE	SIIE	SIIE	CURRENT
	SRIO	SR11						30
SR9	SR10	SR11	59	59		513	513	35
SR9	SR10	SR11						40
			59	59		513	513	45
SR12	SR13	SR16						60
			59	59		513	513	75
SR12	SR13	SR16						90
			59	511		S13	513	100
SR15	SR16	SR17						120
			59	511		513	513	125
SR15	SR16	SR17	59	S11		S13	S13	150
SR15	SR16	SR17						180
			59					200
SR15	SR16	SR17						210
		513		513		513	513	225
59	S10		S14			S14		280
		514		S14			S14	300
		514	S14	S14			S14	350
512	S14	S14	S14	S14		S14	S14	400
	S14	514	S14	S14		S14	S14	450
512	S14	S14	S14	S14		S14	S14	500
512	514		S14			514	S14	600
S12	S14		S14			S14		700
					S14	S14	S15	850
					SR18	SR19	SR20	1100
					SR18	SR19	SR20	1400
					SR21	SR22	SR23	1700
					SR21	SR22 SR22	SR23	1900
					SR21 SR21	SR22 SR22	SR23 SR23	2100 2700
					SR21	SR22	SR23	2700

－Standard O Option（1）Phase Angle only（2）Flat wining avilable as option $\leq 40 \mathrm{~A}$（3） 4 －8－16 Cycles Simplified Burst Fring avilable with Analog Input only（4）Main Anlog Input not included

Size and dimensions of REVO family

REVO CL 1PH

Technical Specification
Dimensions: See size and dimensions from page 16 to 19
Load type: Normal resistance, infrared long, short and medium waveform
Silicon Carbide, cold resistance coupled with transfor
Inputs: $0-10 \mathrm{~V}$ dc, $4-20 \mathrm{~mA}, 10 \mathrm{kpot}$, SSR, RS 485

Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Control mode: Voltage, $V \times 1$ Power and current I and 1^{2}
S485 port. RTU Modbus Protocol
Comply with EMC
Data sheet: More details on "Revo CL" bulletin

Thyristor unit connected with Transformers

Revo CL has been specifically designed to drive transformers and has all the drive capability \& techniques required, configurable from the front panel display.
Close examination of the transformer application needs to be made as the typical inrush current, when switched on.
This over-current will have the result of fuse or thyristor failure.

To avoid this peak current two techniques can be used

- Phase angle firing with soft start and current limit. This type of firing can be used with all types of loads.
Normal resistance
- Cold resistance (Example: Kanthall Super elements)
- Transformer coupled with normal or cold resistance
- Burst firing using the Delay Triggering (DT) technique. To avoid magnetic circuit saturation, the thyristor unit will switch OFF when the load voltage is negative and switch ON again when positive. The unit also has an adjustable delay on voltage zero crossing. In this way it is possible to switch ON when current is zero. This Firing technique can only be used with normal resistance, where its resistive value remains constant with temperature variations.

The BIG advantage with Revo CL
Buy one unit and you remove all application risks, selecting Phase Angle or Delayed Triggering as required via frontal Key Pad.

4^{v}

REVO SSR Analog

Current sizing for REVO SSR/SSR Analog

R062 MODULE Power Dissipation versus on state Current and ambient Temperature

R074 MODULE Power Dissipation versus on state Current and ambient Temperature

R090 MODULE Power Dissipation versus on state Current and ambient Temperature

Specification

This unit is available in three version as is drawing belo Each unit includes Fuse and Fuse Holder, thyristor and heat sink with its own Firing circult
Zero Crossing Fir
Insulated input
LED for On Off Status indication
LED for fuse failure indication
Plug in connection for auxiliary and power terminations
Small dimensions Width:
Din raimensions Width: 36 Depth: 8
Din mounting or screw mounting

- Can be used in applications with many zones and low power a thermoforming, blow Moulding and Hot Runners

Diagram of control connection 4x3,5A

Diagram of control connection $3 \times 4,5 \mathrm{~A}$
Diagram of control connection 2x7A

ORDERING CODE	R	S	d			

REVO S 1PH

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19

Load type: Normal resistance, infrared long and medium waveform Inputs: SSR Standard, $0: 110 \mathrm{~V}, 4: 20 \mathrm{~mA}$ and Heather Break alarm are options Firing mode: Zero Crossing, Burst Firing available with analogue input only operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Comply with EMC
Data sheet: More details on "Revo S IPH" bulletin

Technical Specification

Option

- Analog input: $4 / 20 \mathrm{~mA}$ or $0 / 10 \mathrm{~V}$

Current Transformer only mounted inside

Current Transformer + HB Alarm

Dimensions: See size and dimensions from page 16 to 19
Inputs: SSR Standard, ol 1 IV, 4: i:2omA and Heather Break alarm are options
Firing mode: Zero Crossing, Burst Firing available with analogue input only
Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Comply with EMC
Data sheet: More details on "Revo S 2PH" bulletin

REVO S 3PH

Technical Specification
Dimensions: See size and dimensions from page 16 to 19
Load type: Normal resistance, infrared long and medium waveform Inputs: SSR Standard, $0: 10 \mathrm{~V}, 4: 2 \mathrm{~mA}$ and Heather Break alarm are options Firing mode: Lero Crossing, Burst Firing available with analogue input only Operating tempe
Comply with EMC
Comply with EMC
Data sheet: More details on "Revo S 3PH" bulletin

REVO M 1PH

,
Technical Specification
Dimensions: See size and dimensions from page 16 to 19
Load type: Normal resistance, infrared short long and medium waveform, Silicon Carbide Inputs: 0:10V dc, 4:20mA, IOkpot, SSR, RS485 Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Control mode: Voltage, VXI Power, I and I2
RS485 port. RTU Modbus Protocol
Comply with EMC
Data sheet: More details on "Revo M IPH" bulletin

Option

$\mathrm{HB}+\mathrm{CT}$: Current transformer plus HB Alarm
Configuration software + CCA (cable
Control mode retransmission

REVO M 2PH

Technical Specification
Dimensions: See size and dimensions from page 16 to 19
Load type: Normal resistance, infrared long and medium waveform, Silicon Carbid Inputs: $0-10 \mathrm{~V} \mathrm{dc}, 4-20 \mathrm{~mA}, 10 \mathrm{kpot}$, SSR, RS
Firing mode: Zero Crossing, Burst Firing
Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Control mode: V Voltage, Vxl Power
RS485 port. RTU Modbus Protocol Std.
Comply with EMC
Comply with EMC
Data sheet: More details on "Revo M 2 PH" bulletin

REVO M 3PH

Technical Specification

Option

Dimensions：See size and dimensions from page 16 to 19
oad type：Normal resistive，infrared long and medium waveform，Silicon Carbide Inputs：0－10V dc，4－20mA， 10 kpot, SSR，RS485
Firing mode：Zero Crossing Bust Fivin Operating temperature： 0 to $40^{\circ} \mathrm{C}$ without dera Control mode：Voltage，VXI Power I and I2
RS485 port．RTU Modbus Protocol Std．
Comply with EMC
Data sheet：More details on＂Revo M 3PH＂bulletin

CD 3000E 2PH

Technical Specification
Dimensions：See size and dimensions from page 16 to 19
Load type：Normal resistance，three phase transformer，coupled with normal resistance ， 20 mA ，10k Pot，SR485
Firing mode：Zero Crossing，Burst Firing，DT＋BF（not with cold resistance）
Operating temperature： 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode：V Voltage，Vxl Power，Open Loop
RS485 port．RTU N
Comply with EMC
Comply with EMC Data sheet：More details on＂CD 3000E 2PH＂bulletin

Technical Specification
－Dimensions：See size and dimensions from page 16 to 19
Load type：Normal resistance，three phase transformer coupled with normal or cold resistance
Inputs：None，SSR，o－10V，4－20mA，10kpot，RS485 communicatio
Firing mode：Zero Crossing，Single Cycle，Burst Firing Soft Start +
Triggering＋Burst Firing，Phase Angle，Soft Start＋Phase Angle
Operating temperature： 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode： V, Vx 人， 1
RS485 port．RTU Modbus Protoc
Comply with EMC and cUL

Multidrive 1PH

Technical Specification
－Dimensions：See size and dimensions from page 16 to 19
－Load type：Normal resistance，one phase transformer coupled with normal or cold resistance
Inputs：0－10V，4－20mA，10kpot RS485 communication，SSR
Angle，Soft Start＋Phase Angle
Operating temperature： 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode：Voltage，Current Power，External signal，Current square
SS485 port．RTU Modbus Protocol Std．for other Fieldbus see optio
－Data sheet：More details on＂Multidrive 1PH＂bulletin

Multidrive 3PH

SIZE SR19

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19

Load type: Normal resistance, three phase transformer coupled with normal resistance
Inputs: 0 -10V, 4 -20mA
cold resistance)
Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode: V Voltage, Vx| Power and Current
RS485 RTU port. Modbus Protocol Std. for other Fieldbus see option
Data sheet: More details on "Multidrive 2

Option
Configuration software code: CCA (cable + converter + configuration software)
Profibus DP, Profinet and Modbus TCP

Technical Specification

- Dimensions: See size and dimensions from page 16 to 19 Load type: Normal resistance, Three phase transformer coupled with normal or cold resistance nputs: 0-10V, 4-20mA, 10 kpot , RS485 communication, SSR Phase Angle and Delayed Triggering
Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode: Voltage, Power, Current, Current Square, External Profiling 0:1
RS485 port. RTU Modbus Protocol Std.
Comply with EMC and cUL up to 500A
- Data sheet: More details on "Multidrive 3PH" bulletin

Dedicated to owners and managing directors

Buy REVO TC and you save money and space！

REVO TC Control and power in one unit

REVO TC SSR＋Temperature Controller The most compact integrated solution

Temperature controller with 4 Output and PID Fuse \＆Fuse holde
Solid state relay
－urrent Transforme
－Single loop Integrity
－Dramatic reduction for wiring
using multiple cable with connector －Reduction of use space saving cabinet cost

REVO TC family

The new REVO TC is an integrated solution that offers the following advantages:

Wiring \& Labour Savings.
An immediate cost saving in reduced labour of 2 hours by not connecting 11 wires per zone.
Each wire takes 11 mins when considering the following:

- Schematic reading and understanding
- Distance and path measuring
- Wire cutting

Wire strapping
Wire labelling on two terminations
Wire crimping
Terminals block wiring

- Panel drilling

Plus the actual material cost of 11 wires.

How much is the cost of one labour
hour plus over-heads in your company?
How many control zones do you use in one year?
Make your calculation and see
how much you save in one year
Is there really a decision to be made!
A smaller system solution means less cabinet space required both on the front cabinet area and internally. Again you save money.
Take the advantage of the single loop integrity,
high fault tolerability and very easy maintenance.

REVO TC 1PH 35/40A
This integrated solution includes all you need for a complete control zone at 240-480-600V AC to drive a single phase load.

- Fuse \& fuse holder
- Solid state relay
- Current transformer
- Heater Break Alarm

REVO TC 1PH 60/90/120/150/180/210A
This integrated solution includes all you need for a complete control zone at $240-480-600 \mathrm{~V}$ AC to drive a single phase load.

- Internal fixed fuse
- Solid state relay
- Current transformer
- Heater Break Alarm
- Temperature Controller

REVO TC 2PH 30/35/40A
This integrated solution includes all you need for a complete control zone at $480-600 \mathrm{~V}$ AC to drive a three phase load
in delta and star without neutral connection.

- 2 Off Fuse \& fuse holder
- 2 Off Solid state relay
- 2 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller

REVO TC 2PH 60/90/120/150/180/210A
This integrated solution includes all you need for a complete control zone at $480-600 \mathrm{~V}$ AC to drive a three phase load
in delta and star without neutral connection.

- 2 Off Internal fixed fuse
- 2 Off Solid state relay
- 2 Off Current transformers
- I Off Heater Break Alarm
- I Off Temperature Controller

REVO TC 3PH 30/35/40A
This integrated solution includes all you need for a complete control zone at $480-600 \mathrm{~V}$ AC to drive a three phase load
in delta and star with neutral connection.

- 3 Off Fuse \& fuse holder
- 3 Off Solid state relay
- 3 Off Current transformers
- 1 Off Heater Break Alarm
- 1 Off Temperature Controller $\cdots \cdots \cdots$

REVO TC 3PH 60/90/120/150/180/210A
This integrated solution includes all you need for a complete control zone at 480-600V AC to drive a three phase load
in delta and star with neutral connection.

- 3 Off Internal fixed fuse
- 3 Off Solid state relay
- 3 Off Current transformers
- 1 Off Heater Break Alarm
- I Off Temperature Controller

- Labour for wiring reduced dramatically using multiple cable with connector
- Reduction of used space, saving cabinet cost
- Single loop integrity with easy local identification of the faulty zone
- REVO TC up to 40A is normally used for plastics machinery
- REVO TC over 60A in one, two and three phase versions is normally used in Furnaces

PID temperature controller with Pre Tune, Self Tune and Manual tuning

- 3 Off PID pallets to be enabled at programmed temperature
- RS485 communication from 19200 to 57600 Baud Modbus RTU protocol
- Dual Display to read PV, Set Point and load current
- Auto/Manual bump less balances
- Universal input for Thermocouples, RTD and linear Signal
- Four configurable outputs Relay, SSR, 4:20mA and 0:10V
- Cooling Output selection for Water, Oil or Ventilation
- Programming port USB with CD Automation programming cable

REVO Thyristor unit

- The temperature controller can be connected with different sized REVO Thyristor units
- If using SSR output from the controller use REVO S family
- If using Analogue output from the controller use REVO M family

REvo tu Module
The REVO TU is a termination unit with the following capabilities;

- Provides the power supply \& RS485 comms (Modbus RTU) for up to a max 14 REVO TC units - Collects alarm \& digital input status from all connected REVO TC units
- Can switch on all Revo cunis at the same time using the internal Clock-Relay (date \& time), ideal for a pre-heat warm-up function

TU-PB Gateway RS485 to ProfibusDP

- TU PB is a Gateway able to connect Profibus DP Masters (Multiloop, PLC, DCS) to max 30 REVO TC
- For more information see the documentation available on wnw.cdautomation.com

System architecture with REVO TC

Dramatic reduction for wiring cables

Compare the new REVO TC to a traditional system and you save：
－ 11 wires for each zone
－Each zone takes 11 minutes（see the diagram）
－For each zone you save 11 wires $\times 11$ minutes $=121$ minutes in total －If you use descrete controllers you also avoid the panel cutting／drilling Thats another 15 minutes per controller．

Thats a total time saved of 136 minutes for zone． So how many zones／loops do you sell in one year？

Traditional system

WHY 11 MIN．FOR EACH WIRE？ Schematics reading and understanding，
distances and path measuring.

Wire cutting－Wire stripping－Wire labeling Crimpling the lug with the copper Terminal block wiring－Panel drilling

Same system REVO TC

REVO TC system

Traditional system

Today many machines adopt the traditiona
system layout as shown below：

REVO TC system

As can be seen，the new REVO TC distribuited hardware solution，will give crucial saving such as －Number of wires（cable and labour cost）
－Errors in wiring the machine
－No wire channels
－Cable lenght reduced by 80\％
－Cabinet＇s space reduced
Consider that each cabinet section saves 500 Euro．
The cabinet space used is a key factor．
If the space of components used is
doubled then the cabinet size is doubled

Technical Specification

Dimensions：SR9｜SR10｜SR11｜SR15｜SR16｜SR17 See size and dimensions at page 18－19
Load type：Normal resistance with one or three phase loads
Inputs：Thermocouple，PTIo，
Firing mode：Zero Crossing
Operating temperature： $40^{\circ} \mathrm{C}$ without derating
Control mode：PID temperature controller
Two outputs std and configurable．Output 3 see code．Output 4 Std no relay contac
RS485 port．RTU
Comply with EMC
Data sheet：More details on＂REVO TC＂bulletin

	1	2	3	4	5		6		7	8	9	10	11	12	13	14	15	16								
ORDERING CODE	T	c	－	－	－		－	－	－	－	－	－	－	－	－	－	－	－								
｜Phase controllid 3																	OUTPUT3 10									
${ }_{\text {desesinion }}^{\text {d Phase }}$ Unit 1 PH				${ }_{\text {code }}$		note											code	Note								
（e）																	T									
								1 fof Dio realy contact									12									
CURRENT 1PH－2PH－3PH																	code	Note								
descripion eome note																	F									
${ }_{35 \mathrm{~A}}^{30 \mathrm{~A}}$（								Fuse + Fuse Holder + CT + HB with screw werminalsFuse + Fuse Holder + CT + HB with fat cable connecion									H									
40A400																	$\underset{\text { F }}{\text { F }}$	1								
${ }_{904}^{\text {90A }}$																	H									
P20A120 A150 A																	H									
${ }_{1500} 180 \mathrm{~A}$								franvoltage									13									
2104				21		2											code	Note								
max voltage																	1									
				code		te		Fan 20VV 900 A									2									
4800600 V								Approvals									14									
Voltace suplly aux．								CE EMC For European Market										Note								
									0																	
12：24V a c do																Mesual									15	Note
								descripionNone																		
																	1									
																	3									
																	4									
																	16	No								
								descripionStd unit with a single fuse									1	Note								

[^0]
TMC temperature controller

Technical Specification

PID Temperature controller
Automatic Tuning of PID parameters with Self Tune or Pretune procedure Three pallets of PID parameters of PID be parameters
Dual Display to read PV，Set Point，Load current and programmed PV value
Uuil isplay to read PV，Set Point，Load current and all parameters
Univirsal input for Thermocouple，RTD and linear inpur
Four configurable outputs as Relay， SSR, and $4: 20 \mathrm{~mA}$
Heating and Cooling controller with possibility to select the type of
Heating and Cooling controlle
cooling for fan，water and oil
RS485 communication from 19200 to 57600 Bauds Modbus RTU protocol
he controller can be configured from front push button or via RS 48 rogramming cable

Bumpless Transfer facility
Screw terminals as standard
DIN rail mounting
Option
－Flat cable and connectors for multiple controller system

Why to use REVO PC

BENEFITS:

- Reduce the cost of your energy bill
- Reduce the size of your cable and remove the flikering on lights
- Improve the power factor close to I
- Reduction of harmonics on main supply
- Reduce the electrodynamic forces between coils of transformer on main supply increasing its life

Easy for responsible of software to manage the communication.
These is because he has to write software from PLC or Multiloop Controller to one device like Revo PC that provide itself to communicate up to 24 solid state relay. In addiction you save the cost of output module.

REVO PC

Revolution in power control

Revo PC was designed specifically to manage multizone systems. This powerful unit, with its unique algorithm, will minimize your energy costs by controlling sychronization and power limit.
Benefits include:

- Elimination of power overshoot (see graph below)
- Power factor close to one due to zero crossing firing
- Relay PC keeps your instantaneous power within the limit of your electricity supply contract
- Prevents increases in energy supply tariffs imposed by your electricity supplie
- Quick return on your investment

This powerful unit with high performance micro can drive simple thyristor unit like Relay S with zero crossing firing. By using the $P C$, simple thyristor units can be used reducing the overall financial investment.

Simultaneous fast full wave control of.
8-1 6-24 Revo S IPH single phase units
8 Revo S 2PH/3PH for 3 phase loads
Each loop's process information is managed in independent mode with:

- Calculation of instant current and RMS Current

Power calculation of load resistance with Heater Break Alarm
Modbus Master, Modbus slave, Profilbus DP, Modbus/TCP and other fieldbus available

Easy to start REvo PC

Only few parameter are requested to start with Revo PC

- Set the operative current of the heater zone
- Set the Total Power Limit

Set the Power of each zon
The Revo PC strategy is easy to implement
Do the same operation with a competitor's load management system and the operator must learn up to 15 pages of the manual and understand up to five models of synchronization.

Synchronization
On all controlled zones, the Live Predictive Synchronization is automatic resulting in superior performance:

- Total current is equal to a sinusoidal wave form
- Power factor >0,9
- Instantaneous current close to average value
- Cancellation of harmonics
- Power saving by harmonic reduction
- Flickering effect removed

Synchronization selection is available for normal resistive loads or short infrared.

Smart Power limitation

- Smart power limitation works together with synchronization

If this function is enabled, Revo PC makes a live calculation of power at
each period and generates the output values for the next period.
If the calculated power is below the power limit value, the previous values remain with each channel using full power
If the power is above the power limit value, the setpoint of each channel is reduced proportionally to restrict power overshoot
This function significantly reduces disturbances on the main network compared to a full power system, preventing any increase in energy tariffs imposed by the electricity supplier.
This function can be activated/deactivated and the limit value changed at any time

General Rules to size a REVO PC System

- Each Revo PC Suitable to drive 1 Phase Loads can have up to 24 Channels RPC08: Can drive up to 8 Revo S 1PH with Random Firing
RPC16 : Can drive up to 16 Revo S 1PH with Random Firing
RPC24 : Can drive up to 24 Revo S IPH with Random Firing The zero crossing is performed inside Revo PC
- Each Revo PC Suitable to drive 3 Phase Loads controlled on 2 Phases have 16 Channels RPC28 : Can drive up to 16 Revo S IPH with Zero Crossing Firing
We use 2 Off Revo S 1PH for each 3 Phase Load so in total we control 8 three phase loads
- Each Revo PC Suitable to drive 3 Phase Loads controlled on 3 Phases have 24 Channels

KPC38 : Can drive up to 24 Revo S IPH with Zero Crossing Firing
We use 3 Off Revo S 1PH for each 3 Phase Load so in total we control 8 three phase loads

- For each Revo PC it's necessary

1 Off Auxiliary Voltage Transformer Ex. Between L1 and L2
This is necessary to syncronize Revo PC with the loads wired below same voltage

- For each 8 Channels of one Revo PC it's necessary one Current Transformer

The Current Transformer must have a primary with current > Totale power connected L1 and L2 /Voltage L1 and L2

- For RPC-28 are necessary 3 Off Current Sensor on incoming L1 ; L2 ; L3

The Current Transformer must have a primary with current > Totale power connected on L1 ; L2 and L3 (Voltage Supply x 1,73)
-For RPC-38 are necessary 3 Off Current Sensor on incoming L1 ; L2 ; L3

- The Current Transformer must have a primary with current > Totale power connected on L1; L2 and L3 (Voltage Supply x 1,73)

REVO PC

POWER CONTROL CODE

ADDITIONAL UNITS TO BE ORDERED WITH REVO PC

	1	2	3	4	5	6		7	8	9	10	11	12	13	14	15	16
ORDERING CODE	c	T	s	-	-	-	-	-	-		-	-	-	-	-	-	-
Descripion										code					note		
Current 50/0,05											0	0	0		1-2-3		
Current 100/0,05											0	0	1		1-2-3		
Curent 150/0,05											0	0	2		1-2-3		
Current 200/0,05											0	0	3		1-2-3		
Curent 250/0,05											0	0	4		1-2-3		
Current 400/0,05											0	0	5		1-2-3		
Current 800/0,05											0	0	6		1-2-3		
Current 1000/0,05											0	0	7		$1-2-3$		
Current 1500/0,05											0	0	8		1-2.3		
Current 2000/0,05											0	0	9		1-2-3		

[^1]
REVO is a system not just a product

The innovative designe of REVO Family has been done to satisfy system solutions and to do it has been considered following auxiliary units:

Base plate + Adaptator
How it's possible to see on original base plate can be mounted an adaptor. CD Automation has many of this adaptor for its product.
This is an adaptor for REVO 3PH Thyristor unit
Code: AD-Insert code REVO unit

Copper bar
This picture show how it is possible to mount REVO on copper bars with Length $12: 30 \mathrm{~mm}$ and thickness $5: 10 \mathrm{~mm}$ Lateral Support for 3 copper bars Code: SC3-30 Lateral Support for 4 copper bars Code: SC4-30

Base plate
Different type of base plate are available
The Base Plate have 3 Off Screw terminals 16 mm 2
W $54 \times$ L 200 Code: BP-54-200
W $72 \times$ L 200 Code: BP- $72-200$
W $54 \times$ L 260 Code: BP-54-260

Adaptator
This is an adaptor for REVO up to 210 A in different configuration like 1, 2 or 3 Phase Controll.

Cabinet

This is a cabinet under construction where is possible to see copper bars on all cabinet back panel.
The structure rapresented is the best possible solution to have system coordination for hight short circuit current.
In addition is not necessary to wire power cables from Automatic circuit breaker to each thyristor units.
The base plate are plug- in thus in case of fault it's possible to substitute a complete zone.

Copper comb 1PH
This is a comb done with copper to make a multiple connection of REVO IPH or REVO SSR
This product is sold in pices of one meter.
To have IP20 is available a plastic protection that is supplied as standard with comb copper.
Pitch:36 Central connection:130A Side connection:80A
Code: Comb 1PH-36
Screw terminal
This is a screw terminal that can be mounted in each position of the copper comb above. Code: ST16

Cabinet

This is the cabinet at the end of the mounting and wiring of 60 off temperature controll zones.
The cabinet is very clean from mounting point of view.

Package

This is an example of package where there are 9 Unit One or more screw terminal can be allocated where we want. From this terminal a traditional cable will be connected to circuit breaker directly.

3 phase diode bridge

Horizon for diode high current bridge

S36 H640 ×W $717 \times \mathrm{D} 320-86 / 110 \mathrm{~kg}$.

General description

- All circuit board, fuses and thyristor can be inspected on opening front door - Internal fixed fuses are standard with relay contact output for fuse failur
- Current transformer integrated (option)
- Special design for heat sink with very high dissipation value and cooling tunnel
- Easy for use with diagnostic and wiring diagram on front unit
- Aluminium modulare structure and copper treated against oxidation
- Comply with EMC

Maintainability in function

These are our targets:
Each phase can be substituded by front unit by technician just removing 4 screw without the help of forklift.
The avarage weight of phase is 16 kg
Time required to substitute one phase not more than 10 minuts - Plant downtime not more than 10 minuts, vital for important process When the operator substitute one phase all the auxiliry connection are plug in This allow to be fast and to don't do mistakes in wiring

OUTPUT FEATURES							
$\underset{\substack{\text { Curent } \\ 1 d c}}{ }$	$\begin{gathered} \text { Volage } \\ \text { Range } \\ \text { up to } \end{gathered}$	$\begin{gathered} \text { Ripetitiv) } \\ (600 \end{gathered}$		$\begin{aligned} & \text { Max peak } \\ & \text { one cycle } \\ & \text { (10 msec) } \end{aligned}$	Diode	$\begin{aligned} & \text { Frequency } \\ & \text { range (Hz) } \end{aligned}$	$\begin{aligned} & \text { Power Loss } \\ & \text { I=Inom (W) } \end{aligned}$
2000A	330+690v	2900	2900	17900	1602000	47+70	1827
2300A	330+690V	2900	2900	17900	1602000	47+70	2220
3000A	330-600v	3000	3000	30200	3920000	47-70	2590
3500A	330-690V	2600	2600	35300	6230000	47-70	2765
4000A	330-600V	2500	2500	45000	10125000	47-70	2933

3 PHASE DIODE BRIDGE

SIE 32

	DIMENSION
Current	$2000 \mathrm{~A} / 2300 \mathrm{~A} / 3000 \mathrm{~A} / 3500 \mathrm{~A}$
Wide	635 mm
Deep	320 mm
Height	550 mm

SIE 35

	DIMENSION	
Current	4000 A	
Wide	635 mm	
Deep	320 mm	
Height	640 mm	

3 phase SCR bridge

Horizon for SCR high power bridge

S36 H $640 \times \mathrm{W} 717 \times \mathrm{D} 320-86 / 110 \mathrm{~kg}$.

General description
－All circuit board，fuses and thyristor can be inspected on opening front door
Electronic circuit fully isolated from power
Internal fixed fuses are standard with relay contact output for fuse failure Current transformer integrated（option）
－Special design for heat sink with very high dissipation value and cooling tunnel
Easy for use with diagnostic and wiring diagram on front unit
Aluminium modulare structure and copper treated against oxidation
Comply with EMC
Panel mounting

Maintainability in function

These are our targets：
Each phase can be substituded by front unit by technician just removing 4 screw without the help of forklift
The avarage weight of phase is 16 kg
Time required to substitute one phase not more than 10 minuts Plant downtime not more than 10 minuts，vital for important process When the operator substitute one phase all the auxiliary connection are plug in This allow to be fast and to don＇t do mistakes in wiring Control board plug in for the connection

Custom Family

This products range has been designed with these targets:

- Basic product able to satisfy OEM needs
- Basic Options like Analogue input and Heather Break Alarm
- Easy to be used rugged and very reliable
- Possibility to be customized with OEM logo
- Manuals available in neutral version whithout CD Brand
- Plastic parts in light and dark grey for covers
- Competive pricing where quantity are available

CD3000／Custom feature comparison

	Unit type	CD3000S 1PH	CD3000S 2PH	CD30005 3PH	CD3000M 1PH	CD3000M 2PH
	CODE	CD3000s IPH	CD3000s 2PH	CD3000s 3PH	CD3000M IPH	CD3000M 2PH
	Nominal max voltage power supply	240＊－480－600V	480－600V	480－600V	240＊－480－600V	480－600V
	Curentrange	15：700A	10：700A	15：700A	15：700A	15：700A
	Single phase	－			－	
	3 phase load delta or star no neutral		－			－
	3 phase load star with neutral					
	3 phase load open deta			－		
	SSR O－30VDC	－	－	－	－	－
	Ac input 110 or 230 V	up to 110A O	up to 110A O	up to 90A O		
	4－20mA loop powered	up to 110AO				
	420 mA				－	－
	0－10VDC				－	
	Potentiometer（10k）				\bullet	－
	Communication command				－	－
$\begin{aligned} & \text { U } \\ & \stackrel{\text { Ex }}{\underline{L}} \end{aligned}$	Zero crossing	－	－	－	\bullet	－
	Singe cyde				－	
	Bust fing				－	－
	Sots statt＋burst				－	
	Phase angle				－	
	Delayed tigereing				－	
	Universal firing				－	－
嗍苞	Voltage drop compensation				－	－
	Voltage or curent feedback（ or I $^{\text {）}}$					
	Powerfeed back（ $\times \times 1$ ）					
$\begin{aligned} & \text { 증 } \\ & \text { } \end{aligned}$	Intemal curent limit					
	Extemal current limit profiling					
	Heater break＋short circuit on SCR	up to 110A ${ }^{*}$	up to 100A ${ }^{\text {o＊}}$	up to 90A 0^{*}	O	0
	Exemal fuse \＆fuse holder	$\leq 110 \mathrm{~A}$	S100A	S90A	$\leq 110 \mathrm{~A}$	$\leq 100 A$
	Intemal fuse	＞110A	$>100 \mathrm{~A}$	$>90 \mathrm{~A}$	$>110 \mathrm{~A}$	＞110A
约	RS485 with modbus protocol				－	－
	Profibus + Devicenet + Canbus				TU－PB；TU－DN	TU－PB；TU－DN
$\begin{aligned} & \text { ì } \\ & \text { 学 } \\ & \hline \end{aligned}$	Cd keypad connetivity				－	－
	Frontal keypad					
	Personal computer programmable				－	－
$\begin{aligned} & \text { 氙 } \\ & \text { 空 } \end{aligned}$	CURRENT	SIIE MARK				
	2×10		so CE			
	15	So cul／CE	S1 CUL／CE	S2 CUL／CE	SOC CUL／CE	SIC CUL／CE
	25	so cul／Ce	S1 CUL／CE		SOC CUL／CE	SIC CUL／CE
	30			54 CUL／CE		
	35	S3 CUL／CE	54 CUL／CE		S3C CUL／CE	S4C CUL／CE
	45	53 CUL／CE	57 cul／Ce	S6 cul／Ce	S3C CUL／CE	STC CUL／CE
	60	57 CUL／CE		58 cUL／CE	S7C CUL／CE	
	75		S8 CUL／CE	58 dUL／CE		S8C CUL／CE
	90	S7 CUL／CE		S8 cUL／CE	STC CUL／CE	
	100		S8 CUL／CE			S8C CUL／CE
	110	58 CUL／CE			S8C CUL／CE	
	125	59 CUL／CE	59 CUL／CE	S11 CUL／CE	59 CUL／CE	S9 CUL／CE
	150	59 CUL／CE	59 CUL／CE	S11 CUL／CE	59 CUL／CE	S9 CUL／CE
	200	59 cUl／CE	S10 CUL／CE		S9 CUL／CE	S10 CUL／CE
	210					
	225			S13 CUL／CE		
	275		S14 UL／CE			S14 CUL／CE
	300	S12 CUL／CE（1）		S14 CUL／CE	S12 cUL／CE（1）	
	350			S14 cul／CE（1）		
	400	S12 CUL／CE（1）	S14 cUl／CE（1）	S14 cUL／CE	S12 cUl／CE（1）	S14 cul／CE（1）
	450		S14 UL／CE	S14 cUL／CE（1）		S14 CUL／CE
	500	S12 CUL／CE（1）	S14 cUl／CE（1）	S14 cUL／CE	S12 cUl／CE（1）	S14 cUL／CE（1）
	550					
	600	S12 cUL／CE（1）	S14 cUl／CE（1）		S12 cUL／CE（1）	S14 cUl／CE（1）
	700	S12 UL／CE	S14 UL／CE		S12 cUL／CE（1）	S14 CUL／CE
	800			，		
	1100					
	1400		，	＋	．	
	1700					
	1900		．	＋	＋	
	2100					
	2700					

CD3000 size and dimensions CE-EMC \& cUL APproval

S4 H $120 \times$ W $117 \times \mathrm{D} 123$ S4C H $120 \times \mathrm{W} 148 \times \mathrm{D} 123$

S9 H $316 \times W 116 \times \mathrm{D} 187$

S11 H $440 \times W 137 \times$ D 270

S12 H $520 \times W 137 \times$ D 270

S13 H $440 \times$ W $262 \times$ D 270

[^2]Custom size and dimensions CE-EMC Approval

$\mathbf{S} 28 \mathrm{H} 478 \times \mathrm{W} 130 \times \mathrm{D} 274-14 \mathrm{~kg}$.

$\mathbf{S 3 0} \mathbf{H} 478 \times \mathrm{W} 390 \times \mathrm{D} 274$-42kg.

S31 H $550 \times$ W $329 \times$ D $320-27 \mathrm{~kg}$.

S32 H $550 \times$ W $523 \times$ D $320-49 \mathrm{~kg}$.

S33 H $550 \times$ W $717 \times$ D 320 - 72kg.

Technical Specification

- Voltage power supply: 24 V minimum, 480 V or 600 V max
- Current limit: Adjustable by pot or by serial comm

Current limit: Adjustable by pot or by serial comm
Dimensions: See size and dimensions from page 56 to 59
-oad type: Normal resistance, infrared long, short and medium waveform Silicon carbide, cold resistance coup
$0-10 \mathrm{~V}$ dc $4-2 \mathrm{~mA}$, , 10 kpot , SSR, RS 485

- Firing mode: Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating

Control mode: Voltage, Vxl power, current I and 12

- Comply with EMC - cuL
- Mounting: DIN rail up to 110A, bulk head over 110

IP20 protection
Data sheet: More details on "CD3200" bulletin

ORDERING CODE

Model	Curent (A)	$\begin{aligned} & \text { Oper. } \\ & \text { Voltage (l) } \end{aligned}$	$\underset{\substack{\max \\ \text { Votage (V) }}}{\text { ane }}$	$\underset{\text { Voltage (Y) }}{\text { Aux }}$	Input	Fring mode	Feed back	Options	Manual
CD 3200	15 A	24 Vmin	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	$90: 130 \mathrm{~V}$ 170:265V $230: 345 \mathrm{~V}$ 300:530V 510:690V	$0 \div 10 \mathrm{~V}$ $4 \div 20 \mathrm{~mA}$ 10K Pot. SSR	S+PA (Soft start + Phase Angle) PA (Phase Angle)	$\begin{gathered} v \\ 1 \\ v \times 1 \\ v_{1} \end{gathered}$	NCL (No current limit) COMM (RS485 Modbus) CD-KP (Eternal Key Pad) EF (External Fuse + fuse holder) NF (No Fuse) IF (Internal Fuses are St. over 110A) HB (Heater Break alarm) 110 V Fan (Fan at 110V) UL (cUL us listed)	None Italian English German French
	25A								
	35A								
	$45 A$								
	60A								
	908								
	110 A								
	$125 A$								
	150A								
	200 A								
	300 A								
	400 A								
	500 A								
	600 A								
	700 A								
Example ca	complation								
CD 3200	125 A	440 V	480 V	300:530V	0 +10 V	PA		HB + UL	English

CD 3000S 1PH

Technical Specification

Single phase thyristor: Unit up to 700A
Dimensions: See size and dimensions from page 56 to 59
Load type: Normal resistance, infrared long and medium waveform
Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
Firing mode: Zero Crossing, Burst Firing available with analogue input only - Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating

- Comply with EMC
- Comply with EMC
- Heater break alarm: diagnostic partial or total load failure up to 110A
- IP20 Protection

Data sheet: More details on "CD 3000S IPH" bulletin

ORDERING CODE

Model	Current (A)	Oper. Volitage (V)	$\begin{array}{\|c} \text { Max } \\ \text { Voltage (V) } \end{array}$	$\begin{gathered} \text { Aux } \\ \text { Voltage (y) } \end{gathered}$	Input	Fring mode	Options	Manual
CD 3000 1PH	2×10	24 V min	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	No $14: 24 \mathrm{~V}$ 90:130V 170:265V 230:345V 300:530V 510:690V				
	$15 A$							
	25A							
	35A							
	45A				SSR	zc (zero Crossing)		
	60A				0+10V	BF (Bust Eing with andos	EF(Exemalfuse + fuse tolder)	None
	90A				$4+20 \mathrm{~mA}$	(brimema	NF (No fuse)	lan
	110 A					BFO4 (4 cydes on +4 off)	If (ntemal fues are St. vere 1 10V)	,
	125A					BFO8 (8 cdes on +8 off)	HB (Heater Break lamm)	
	150A				rovac (1)	BFol6 (16 addes on +16 off)	110 VFan (Fan at 110 O	German
	200 A				$230 \mathrm{Vac}(1)$	Note For Bust Firing specify the desired n° of cycles ON at 50% of power demand	UL (cUl us isted)	Fiench
	300 A				4:20 Loop powered			
	400 A							
	500 A							
	600 A							
	700 A							

CD 3000S 2PH

Technical Specification

Dimensions: See size and dimensions from page 56 to 59
Load type: Normal resistance, infrared long and medium waveform
Inputs: SSR Standard, $0: 10 \mathrm{VV}$, $4: 20 \mathrm{~mA}$ and Heather Break alarm are options
Firing mode: Zero Crossing Burst Firing available with alo
Firing mode: Zero Crossing, Burst Firing available with analogue input only
Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating

- CD 3000 2 2PH: Two legs switcing 3 wire load star or delta connected
hyristor unit up to 700A
HB alarm to diagnostic partial or total load failure from 40 to 100 A
- P20 protection

Data sheet: More details on "CD3000S 2PH" bulletin

ORDERING CODE								
-	-	-	-	-	-	-	-	
Model	Current (A)	Oper. Voltage (V	Max Voltage (V)	Voltage (M)	Input	Fring mode	Options	Manual
CD 30005 2PH	10 15 A 25 A 35 A 45 A 75 A 100 A 125 A 150 A 200 A 275 A 400 A 450 A 500 A 600 A 700 A	24 Vmin	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	$\begin{gathered} \text { No (1) } \\ \text { 14:24V (3) } \\ 90: 130 \mathrm{~V}(2) \\ \text { 170:255 (2) } \\ 230: 345 \mathrm{~V} \text { (} 2) \\ \text { 300:53V (2) } \end{gathered}$	$\begin{gathered} \text { SSR } \\ 0+10 \mathrm{~V} \\ \hline 4+20 \mathrm{~mA} \\ 10 \mathrm{~K} \text { Pot. } \end{gathered}$	Zc (Zero Crosing) BF (Burst finge) with analog BFo4 (4 yddes on +4 off) BFo8 (8 cyles on +8 off) BFO16 (16 वdes on +16 off) Note: For Bust Firing specify the desired n° of f cles ON at 50% of power demand	EF (External Fuse + fuse holder up to 100A) NF (No Fuse up to 100A) IF (Internal Fuses are St. over 100A) HB (Heater Break alarm) 110 V Fan (Fan at 110 V) UL (cUL us listed)	None Italian English German French
Example code compilition								
CD 3000 2 2 PH	150 A	440 V	480 V	300:530V	4.20 mA	BFo8	нв	Engilsh

CD 3000 3 3PH

Technical Specification

Dimensions: See size and dimensions from page 56 to 59
Load type: Normal resistance, infrared long and medium waveform Inputs: SSR Standard, Heather Break alarm are options firing mode: Zero Cossing Operating temper
Comply with EMC
Comply with EMC Data sheet: More details on "CD3000s 3PH" bulletin

ORDERING CODE

Model	Current (A)	Oper. Voltage (V)		Aux Voltage (V)	Imput	Firing mode	Options	Manual
CD 30005 3PH	15A	24 V min	$\begin{aligned} & 480 \\ & 600 \\ & 6 \end{aligned}$	No (1) 90:130V (2) 230:345V (2) 300:530V (2) 510:690 (2)	$\begin{gathered} \text { SSR } \\ 110 \mathrm{Vac} \end{gathered}$	Z ((zero cossing)	EF (Extemal Fuse + fuse holder up to 90A) NF (No Fuse up to 90A) HB (Heater Break alarm) 110 V Fan (Fan at 110V) UL (cUL us listed)	None Italian German French
	30A							
	45A							
	60A							
	75A							
	90A							
	125 A							
	150 A							
	$225 A$							
	300 A							
	350A							
	400 A							
	450A							
	500 A							
Example code co	npilition							
CD 300053 PH	150A	440 V	480 V	300:530V	SSR	zc	UL+EF	English

CD 3000M 1PH

Technical Specification

- Dimensions: See size and dimensions from page 56 to 59

CD3000M: Is a digital and universal thy ristor unit configurable via serial communication port
RS485 comm. ModBus Protocol: Induded as stand
rotocol. included as standard
Universal input

- Load type: Normal resistance, infrared short long and medium waveform, Silicon Carbide
- Inputs: 0:10V dc, 4:20mA, 10 kpot , SSR, RS 485

Firing mode: Zero Crossing, Burst Firing, Single Cicle, Soft Start + Phase Angle, Delayed Triggering Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
S485 port. RTU Volage, Vx1 Power, I and I2
RS485 port. RTU Modbus Protoco
Comply with EMC and cUL
20 protection
Data sheet: More details on "CD 3000M 1 PH" bulletin

ORDERING CODE

Model	Current (A)	$\begin{aligned} & \text { Oper. } \\ & \text { voltage (v) } \end{aligned}$	$\underset{\substack{\text { Max } \\ \text { Voltage (})}}{ }$	$\begin{gathered} \text { Aux } \\ \text { Voltage (V) } \end{gathered}$	Input	Fiting mode	Control mode	Options	Manual
CD 3000 IPH	15A	24 Vmin	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	90:130V (1) 170:265V (1) 230:345V (1) 300:530V (1) $510: 690 \mathrm{~V}$ (1)	$\begin{gathered} \text { SSR } \\ 0+10 \mathrm{~V} \\ 4+20 \mathrm{~mA} \\ 10 \mathrm{KPot} \end{gathered}$	ZC (Zero Crossing) SC (Single Cycle) BF (Burst Firing) DT (Delayed trigg. + Burst Firing) S+BF (Soft start + Burst Firing) PA (Phase Angle) Note: For Bust Firing specify the desired n° of cycles on at 50%		COMM (RS485 ModBus) CD-KP (Eternal Key Pad) EF (External Fuse + fuse holder) NF (No Fuse)	None Italian English German French
	25A								
	35A								
	45A								
	60A								
	90A								
	110 A								
	$125 A$								
	150 A								
	200 A							HB (Heater Break larn)	
	300 A							$1100 \mathrm{Fan}($ fan at 110 O)	
	400 A							UL (cul us isted)	
	500 A								
	600 A								

[^3]$440 \mathrm{H} \quad$ 300:530V $\quad 4+20 \mathrm{~mA}$
Note (1) Auxiatiay volage supply uust be snch horized with load volase

- $\mathrm{HB}+\mathrm{CT}$: Current transformer plus HB Alarm

Contiguration software + CCA (cable +
converter)

CD 3000M 2PH

Technical Specification
Dimensions: See size and dimensions from page 56 to 59
CD3000M: Is a digital and universal thyristor unit configurable via seria com
RS485 comm. ModBus Protocol: Included as standard
Two phase thyristor: Unit up to 700A
Universal input
Load type: Normal resistance, infrared long and medium waveform
. Inputs: $0-10 \mathrm{~V}$ dc, $4-20 \mathrm{~mA}, 10 \mathrm{kpot}$, SSR, RS485
Firing mode: Zero Crossing, Burst Firing
Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
Santrol mode: V Voltage, VXI Power
Sort. RTU Modbus Protocol Std.
Comply with EMC and cUL
IP20 protection
Data sheet: More details on "CD 3000M 2PH" bulletin

ordering code

Model	Current (A)	Oper. Voltage (V)	$\underset{\text { Max }}{\substack{\text { Max } \\ \text { Volage } \\ \text { (n) }}}$	Voltage (n)	Imput	Fring mode	$\begin{aligned} & \text { Control } \\ & \text { mode } \end{aligned}$	Options	Manual
CD 3000 M 2PH	15A	24 Vmin	$\begin{aligned} & 480 \\ & 600 \end{aligned}$	90:130V (1) 170:265V (1) 230:345V (1) 300:530V (1) 510:690 (1)	SSR $0 \div 10 \mathrm{~V}$ $4 \div 20 \mathrm{~mA}$ 10K Pot.	ZC (zero crossing) SC (Single cycle) BF (Burst firing) Note: For Bust Firing specify the desired n° of cycles ON at 50% of power demand	$\begin{gathered} v \\ \text { v } \\ \text { v×1 } \end{gathered}$	EF (External Fuse + fuse holder) NF (No Fuse) IF (Internal Fuses are St. over 110V) HB (Heater Break alarm) 110 V Fan (Fan at 110 V) UL (cUL us listed)	None Italian English German French
	25A								
	35A								
	45 A								
	75A								
	90A								
	${ }^{125 A}$								
	150 A								
	200 A								
	300 A								
	400 A								
	500 A								
	600 A								
	700 A								
Example code co	npilition								
CD 3000 2 2 H	150 A	440 V	480 V	300:530V	4+20mA	PA	1	нв	English

Option

- HB + CT : Current transformer plus HB Alarm

Configuration software + CCA (cable + converter)

CD 3000M 3PH

Technical Specification
Dimensions：See size and dimensions from page 56 to 59
CD3000M：I I a digital and universal thyristor unit configurable via serial communication port
Three phase thyristor：Unit up to 500 A
Load type：Normal resistive，infrared long and medium waveform
Inputs：0－10V dc，4－20mA， 10 kpot ，SSR，RS485
Firing mode：Zero Crossing，Burst Firing
Operating temperature： 0 to $40^{\circ} \mathrm{C}$ without derating
Control mode：Voltage，VXI Power I and 12
Comply with EMC and cUL
IP20 protection
Data sheet：More details on＂CD 3000M 3PH＂bulletin

ORDERING CODE

[^4]

Option
－ $\mathrm{HB}+\mathrm{CT}$ ：Current transformer plus HB configuration
software + CCA（cable＋converter）

DON’T GO CRAZY！

If you want an easy life select our Custom Unit

Rugged and very reliable

input and output copper bar from up－down side or front unit

SIE S28 - from 300A to 800A

Technical Specification

Sue phase thyristor: Unit from 300 to 800A
Suitable to drive: 1 phase loads at $480-600-690 \mathrm{~V}$

- Load type: Normal resistance, infrared long and medium
- Frontal key pad: Alarm indication and setting
- Protection: Inside semiconductor fuses
- Inputs: SSR Standard, 0:10V, 4:20mA as option

Firing mode: Zero Crossing and Burst Firing available with analog input
IP20 protection: Standard
Comply with CE-EMC
Data sheet: More details on "Custom 1PH from 300 to 800A" bulletin

Option

Measurement package including:
Heather break alarm: Diagnostic partial or total load failure
Second thermal switch: For high heat sink
voltage contact output

- Fuse failure: Microswitch with free voltage contact output

Custom 1PH from 1100A to 2700A

SIZE S31 - from 1100A to 1400 A \qquad SIZE S34 - from 1700A to 2700A
Technical Specification
One phase thyristor: Unit from 1100 to 2700 - Suitable to drive: 1 phase loads at $480-600-690 \mathrm{~V}$ - Dimensions: See size and dimensions from page 56 to 59 - Frontal key pad setting: Alarm indication and configuration - Protection: Inside semiconductor fuses

Inputs: SSR Standard, 0:10V, 4:20mA selectable

- Firing mode: Zero Crossing and Burst Firing available with analos inot and configurable from 1 to 255 cydes ON at 50% power demand Removill prote phase: By front unit without fork lift help
Second thermal switch: For high heat sink temperature with free voltage contact output standard
- Fuse failure microswitch: Free voltage contact output standard Structure: Alluminium and copper structure treated against oxidatio - Diagnostic and wiring diagram: Easy to use on front unit - Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating IP0 protection: Standard
IP20 protection: Option
- Data sheet: More details on "Custom 1PH from 1100 to 2700A" bulletin

Option
Measurement package including: Heather break alarm: Diagnostic partial or total load failure - Digital read out: Current, voltage and power

SIZE S28-150A-210A-300A

SIZ S29-450A-550A-800A

Option

Measurement package including
-Heather break alarm: Diagnostic partial or total load failure
Digital read out: Current, voltage and power
Second thermal switch: For high heat sink
voltage contact output

- Fuse failure: Microswitch with free voltage contact output

Technical Specification

Two phase thyristor: Unit from 150 to 800 A
Dimensions: See size and dimensions from page 56 to three phases Load type: Normal resistance, infrared long and medium Frontal key pad: Alarm indication and setting
Protection: Inside semiconductor fuses
Inputs: SSR Standard, 0:10V, 4:20mA as option
firing mode: Zero Crossing and Burst Firing available with analog inpu
IP20 protection: Standard
Comply with CE-EMC
Data sheet: More details on "Custom 3PH from 150 to 800A" bulletin

- Fuse failure microswitch: Free voltage contact output standard - Structure: Alluminium and copper structure treated against oxidation Diagnostic and wiring diagram: Easy to use on front unit
Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating IP0 protection: Standard
IP20 protection: Option
Comply with CE-EMC
Data sheet: More details on "Custom 2PH from 1100 to 2700A" bulleti
Option
Measurement package including:
-Heather break alarm: Diagnostic partial or total load failure - Digital read out: Current, voltage and power

Technical Specification

Two phase thyristor: Unit from 1100 to 2700
Suitable to drive: 3 phase loads at $480-600-690 \mathrm{~V}$ with 2 phase controlled
Load type: Normal resistance, infrared long and medium 56
Frontal key pad setting: Alarm indication and configuration

- Protection: Inside semiconductor fuses

Inputs: SSR Standard, $0: 10 \mathrm{VV}, 4: 2 \mathrm{ma}$ s selectable

- Firing mode: Zero Crossing and Burst Firing available with analog input Removible phase: By front unit without fork lift help
Second thermal switch: For high heat sink temperature with free voltage contact output standard
,

Technical Specification

Three phase thyristor: Unit from 150 to 800 A
Suitable to drive: 3 phase loads at $480-600-690 \mathrm{~V}$ on three phases Load type: Normal resistance, infrared long and medium Frontal key pad: Alarm indication and setting
Protection: Inside semiconductor fuses
Inputs: SSR Standard, $0: 10 \mathrm{VV}, 4: 20 \mathrm{~mA}$ as option
Firing mode: Zero Crossing and Burst Firing available with analog input
IP20 protection: Standard
Comply with CE-EMC
Data sheet: More details on "Custom 2PH from 150 to 800A" bulletin

SIE S36 - from 1700A to 2700A

Technical Specification

Three phase thyristor: Unit from 1100 to 2700A
Suitable to drive: 3 phase loads at $480-600-690 \mathrm{~V}$ with 3 phase controlled
Load type: Normal resistance, infrared long and medium
Frontal key pad setting: Alarm indication and configuration

- Protection: Inside semiconductor fuses

Inputs: SSR Standard, $0: 10 \mathrm{~V}, 4: 20 \mathrm{~mA}$ selectable

- Firing mode: Zero Crossing and Burst Firing available with analog input and configurable from 1 to 255 cycles ON at 50% power demand Stall protection alarm: For faulty fan
Second thermal switch: For high heat sink temperature with free voltage contact output standard
- Fuse failure microswitch: Free voltage contact output standard Structure: Alluminium and copper structure treated against oxidatio Diagnostic and wiring diagram: Easy to use on front unit
Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating IPO protection: Standard
Comply with CE-EMC
Data sheet: More details on "Custom 3PH from 1100 to 2700A" bulletin
Option
Heather break alarm: Diagnostic partial or total load failure Digital read out: Current, voltage and power

Auxiliary Units

CD-RS

compact and smart communication converter
 Input RS232 Output RS485 or 422

RS232 connection via a 9 pin connector on front of unt
RS485 or 422 via screw terminals
This converter can be used to interface a computer with CD Automation communicating Thyristor Units. Code: CD-RS | For more informations see "CD-RS" bulletin

Field Bus Modules

Code: TU-RS 485-PDP-BASIC used to convert RS485 Modbus to Profibus DP
For more informations see "TU-RS485-PDP-BASIC" bulletin
Code: TU-RS485-ETH used to convert RS485 Modbus to Ethernet Modbus TCP
For more ins 1 ans see "TU-RS485-ETH" bulletin
For more informations see "TU-RS $485-$ PNT" bulletin

CD KP-Operator Interface
The CD-KP is designed to be connected with CD 3000 E and Multidrive via RS 485 communications. The CD-KP is designed to be connected with CD 3000 and Multidrive via RS 485 C
The LED display will show Power, Voltage or Current values, all in engineering units.
The LED display will show Power, Voltage or Current values, all in engineering units
No need to open the cubicle door and stop the process, an RS 485 connector on the front of the unit
allows direct connection to a portable PC for easy configuration.
In addition the display unit allows simple diagnostics of fault conditions.
For more informations see "CD-KP" bulletin

Revo-KP2 Graphic Operator Terminals for Thyristor Units

This unit is based on a colour touch panel and can be used to be interfaced up to 6 Thyristor units.
On front unit is possible to set or to read.
Load Current in RMS value and Load Voltage
Power delivered to the load and Power demand

- Digital input Status
- SC = Short circuit on Thyristor
$\mathrm{HB}=$ Partial or total load fal
Trend of the selected v
Trend of the selected variable Ex.Current Voltage for Revo M, Revo CL, CD 3000E, Multidrive More details on manual

Configuration Software

CD Automation Configurator Software is free of charge.
The thyristor unit leave the factory alredy configured but if is necessary to verify the contiguration or to modify it is necessary to have the configurator plus the Cable Kit.
Code: CCA cable + converter.
There is one page very friendly named "Test Unit" from where without instruction is possible to
communicate in intuitive mode. Just clicking on what you need.
With CD-RS converter (see above) it's possible to communicate with the Thyristor unit without cable kit. Code: CD-CONFIGURATOR

Cable Kit

The cable kit on left side is for universal use on CD Automation Thyristor unit including Revo and CD 3000 Familys Type of connector and USB cable as described on the Manual.
The components of the Kit are

- 2 USB cable

1 adapter with 4 poles
adapter with 4 poles
Code: CCA

DIN-RAIL mount semiconductor fusing

Protection for your CD 1-2-3 PH Solid state power controllers

For efficient protection of your CD 1-2-3 PH
solid state power controller, use semiconductor fuses to
ensure a long life.
To safeguard your Power Controllers CD Automation
offers Fuse and Fuse Holder correctly sized to protect the Thyristors.

All Fuses should be rated at 25% more than Power
Controller rating.
Controller 12 t .

Semiconductor Fuses are classified for UL as
additional protection for semiconductor.
They are not approved for branch circuit protection.

CE VERSION								
fuse					FUSE Holder			
Amp Reating	$\mathrm{P}_{\mathrm{t}}\left(\mathrm{A}^{2} \mathrm{Sec}\right)$	Code	Diameter	Length	Code	CD1	CD2	CD3
32	600	FU1038/32A	10,3	38	FFH1038/32A	CD1025	CD2025	CD3025
50	2000	FU1451/50A	14	51	FFH1451/50A	CD1045	CD2045	CD3045
80	6550	FU2258/80A	22	58	FFH2258/80A	CD1060		CD3060
100	13500	FU2258/100A	22	58	FFH2258/100A		CD2075	
125	14000	FU2258/125A	22	58	FFH2258/125A	CD10090	CD2090	CD3090

cUL VERSION								
FUSE					FUSE HoldERCode	THYRIITOR UNIT TTPE		
Amp Reating	$\mathrm{I}^{2}\left(A^{2} \mathrm{Sec}\right)$	Code	Diameter	Lengh		CD1	CD2	CD3
32	600	FWC32A10F	10,3	38	FFH1038/32A	CD1025	CD2025	CD3025
50	1800	FWP50A14F	14	51	FFH 1451/50A	CD1045	CD2045	CD3045
80	6600	FWP80A22F	22	58	FFH2258/100A	CD1060		CD3060
100	6970	CPURQ27x60/125	22	58	FFH2258/1250A	CD10090	CD2075-CD90	CD3090

Fuse table

FUSE FOR REVO FAMILY											
Model fuse \＆Thyristors	RS IPH	$\underset{\mathrm{RCL}}{\mathrm{RM}}$	RS 2PH	RM 2PH	RS 3PH	RM 3PH	RE 2PH	RE 3PH	M IPH	M 2PH	M 3PH
Current											
30A	FU1451／40A	FU1451／40A	ful451／40A	FU1451／40a	FU1451／00A	FU1451／00A					
35A	FU145／50A	FU1451／50	FU1451／50A	FU1451／50	FU1451／50	Fu1451／50A	2055920.160	$\begin{gathered} 2 \mathrm{2x} \\ 5007306.100 \end{gathered}$		2055920.160	2055920.160
40A	FU1451／50A	FU1451／50A	ful451／50A	FU1451／50A	FU1451／50A	FU1451／40A					
45A							2055920.160	5007306.100		2055920.160	2055920.160
60A	2055920.160	2055920.160	2055920.160	2055920.160	$5007300_{100}^{2 \times}$	5007306					
75A							2055920.160	$500730^{2 \mathrm{x}}, 100$		2055920.160	2055920.160
90A	2055920.160	2055920.160	$\begin{gathered} 206 \\ 5007306.100 \end{gathered}$	2055920.160	$5007300_{100}^{2 \times}$	5007306					
100 A							2055920.160	2055920.160		2055920.160	2055920.160
120 A	2055920.180	2055920.180	2055920.180	2055920.180	2055920.180	2055920.180					
125 A							2055920.180	2055920.180		2055920.180	2055920.180
150A	2055920200	2055920200	205590200	205590200	205592020	205590220	2055920250	2055902050		2055920250	2055920.50
180 A	2055920250	2055920250	205590250	205920250	205590250	2055920250					
2004			2055920315								
210 A	2055920315	2055920315	2055920315	205590315	205590315	2055920315					
225 A					2055920315	2055920315		2055920315		2055920315	2055920315
2804	2055920200	20559202000	20559202000	20559202000			20559202020			$\begin{gathered} 2 x \\ 2055920.200 \end{gathered}$	
300 A					fu450fm	fu450fM		fus5orm			fu450FM
350 A					fusormm	fus5ofm		fus5ormm			fu550fm
400 A	fus5orm	fus5orm	fus5ofm	fus5orm	fus5ormm	fus5ofm	fu50\％mm	fus5ormm		fus5orm	fus5orm
450A					fuフofmm	futoofm	$\mathrm{FUS}_{215 \mathrm{FM}}^{2 \mathrm{x}}$	fucoofm		$\mathrm{F}_{\mathrm{FUS} 15 \mathrm{FM}}^{2 \mathrm{x}}$	fu7oofm
500 A	ғитогмм	fưofm	${ }_{c}^{2 x^{2 x} 15 \mathrm{M}}$	$\mathrm{Fu}_{215 \mathrm{Fm}}^{2 \mathrm{C}}$	fu7oorm	fu7oofm		fu7oofm		$\mathrm{FHO}_{\mathrm{F} 15 \mathrm{Fm}}^{2 \mathrm{x}}$	fuооомм
600 A	fu450fMM		$\begin{gathered} 2 \times \mathrm{Cum} \\ \text { FU450-MM } \end{gathered}$	$\begin{aligned} & 2 \times 2 x \\ & \text { FU450FMM } \end{aligned}$			$\begin{gathered} 2 x^{2 x} \\ 450 \mathrm{FM} \end{gathered}$			$\begin{gathered} 2 x^{2} \\ 450 \mathrm{FM} \end{gathered}$	$\begin{gathered} 2 x^{2} \\ 450 \mathrm{FM} \end{gathered}$
7004	$\underset{\text { Fut50-MM }}{2 \times 2 x}$	$\begin{gathered} \text { futbermm } \\ \text { fut } \end{gathered}$		$\stackrel{2 \mathrm{xamm}}{\text { fut5ormu }}$			$\begin{aligned} & \text { 20x } \\ & \text { futsorm } \end{aligned}$				
850 A										$\frac{2 \times \mathrm{mm}}{\text { Fu550-MM }}$	$\begin{aligned} & \text { fu550emm } \\ & \hline 20 \end{aligned}$
1100 A									$\begin{gathered} \text { sob3.800 } \end{gathered}$	$\operatorname{sQB3}_{\substack{2 x \\ \hline 800}}$	$\text { sobis.80 }_{2 \mathrm{ex}}$
1400A									$\operatorname{socsin}^{2 \mathrm{zx}} 1250$	$\operatorname{sog}^{2 \mathrm{ax} .1250}$	$\operatorname{sob}^{2 \mathrm{ex} .1250}$
1700A									$\operatorname{sobe3.1250}^{2 \mathrm{x}}$		$\operatorname{sobs3.1250}_{2 x}^{2 x}$
1900A									$\begin{gathered} \text { sobs. } 1400 \\ \text { sor } \end{gathered}$	$\text { sobe3. }{ }^{2 \mathrm{x}} 1400$	$\text { scobi. }^{2 \times 1400}$
2100 A									$\begin{gathered} \text { sob3. } 1600 \end{gathered}$	$\begin{gathered} \text { so8b. } 1600 \end{gathered}$	$\begin{gathered} \text { seb3. } 1600 \end{gathered}$
2700A									${ }_{5083.1100}^{4 .}$	$\operatorname{sob}_{\text {se3. } 1100}^{4 x}$	S083．1100

Note：The internal fuses for CD3000E 2 －3PH are listed as RE 2PH－3PH at page 74
The internal fuses for Multidirive $1-2-$ 3PH are listed as M1PH－M2PH－M3PH at page 74

Amplivect IGBT

Stop to chop voltage with phase angle generating harmonics.
Control the voltage adjusting its amplitude with IGBT technology.

Amplivect feature

- Three phase IGBT unit with balanced current input
- One phase output with square waveform
- One phase output with sinussoidale waveform with internal choke
- Amplitude control of output vector
- Short circuit prevention
- Control mode in voltage, current and power
- Semiconductor internal fuses not necessary
- No downstream transformer to reduce load voltage
- Automatic calculation of load resistance
- Power load management for multiple units with power limit
- Automatic compensation temperature and aging for SIC elements
- Heather break alarm to diagnostic partial or total failure
- Alarm indication
- External key pad

Technical Specification

Voltage supply: 3 phase $400 \mathrm{~V} \pm 10 \%$ 50/60Hz
Auxiliary voltage: 220 Vac

- Output: 3/9/10/21 KW
- Fan cooling
- Fan cooling Communication Std: RS232/RS485 other field bus available
- USBport
- Ethernet

Read out:

- Load current

Input line current on the three fases
Load voltage

- Load power consumption
- Analog output:

Four analog configurable output as 4-20 or 0:10v
Analog input:
Three analog input
Digital input/output
Four input Std $24 V$ dc
Four input Std 24 V dc

UVC the IGBT lamp UV control

The UVC unit has been designed to control UV lamp using ICBT technology with continuos voltage to the lamp. In this period the people is very sensitive to reduce power consumption to be able to minimize energy cost and respect the environment reducing CO 2 .

THE ADVANTAGES ARE:

Lower operation costs
With standby output power at 10% of nominal and with UVC ready to reach in second the 100% power when
the product is ready to be dried.
UVC is compact and modular
Unit with possibility to mount side by side or one unit over the other one to save space and money in the construction.

UVC available

At low voltage up to 9 KW and 2000 V up to 22 KW with integrated high frequency transformer

Lamp output control

In continuos mode with power regulation from 10 to 100\%

UVC feature

- Three phase IGBT unit with balanced current input on the three phase - One phase output with square waveform or 1 EMC input filter integrated - One phase output with sinussoidal waveform with internal transforme sized to supply UV lamps up to 2700
Amplitude control of output vector
- Short circuit prevention
- Control mode in voltage, current and powe
- Semiconductor internal fuses not necessary
- Power load management for multiple units with power limit - Alarm indication

External key pad for alarm and read-write parameters

- Multi language instruction and alarm read out

Technical Specification

Voltage supply: 3 phase $400 \mathrm{~V} \pm 10 \% 50-60 \mathrm{~Hz}$
Auxiliary voltage: 220 V ac
Output: 3/9/10/21 KW
Output: $3 / 9 / 10 / 21 \mathrm{~kW}$
EMC filter on input
Fan cooling
Communication Std: RS232/RS485 other field bus available USBport
Ethernet
Read out:

- Load curren
Input line current on the three fases
- Load voltage
r consumption
Analog output:
- Four analog configurable output as 4-20mA or 0:10V
log inpu
- Three analog input

Digital input/output:
Four input Std 24 V dc

Units mounting side by side or one over the other

Buy our application software

You get CD Automation Know How

Application with infrared lamps

CD Automation Thyristor Units are suitable to drive simple and complex Heating Elements. The wide Product Range in terms of performance (5 product families) and Current Range (from 3,5:2700A) offers a product solution for all application requirements.

NORMAL RESISTANCE
In this application, REVO S family up to 700A is normally used.
Over this current we recommend the Multidrive or Custom family up to 2700A.

INFRARED LAMPS MEDIUM AND LONG WAVEFORM
This type of heating elements are controlled as a normal resistance load, providing that the nominal supply voltage is used.
providing that the nominal supply voltage is used.
If using medium waveform at a lower voltage than nominal, then this should be treated as short waveform load.

INFRARED LAMPS SHORT WAVEFORM

Infrared Short Wave loads can be driven with different types of Firing: Single Cycle, Burst Fring and Phase Angle with Current Limit. The above graph demonstrates how the inrush current remains high for a longer period if we use phase angle plus current limit, than with single cycle. Single cycle technique is the most used to drive infrared short waveform. During the off time the IRSW elements become cold (due to their low inertia) and when switched ON again there is a peak of current.
This peak of current is a function of the number of burst firing cycles, for this reason the off time must be as short as possible to reduce this current peak. Phase angle firing is not used because the supply voltage is normally less than nominal and therefore the elements never reach the working temperature.

Infrared lamps system architecture

Si-C touch panel

CD Automation has developed many applications dedicated to drive particular loads and one of these application is for Silicon Carbide.
The Philosopy is to use standard thyristor units with serial communication and to implement the control strategy inside the intelligent panel.
This Touch Panel in addition to a CD Automation universal unit able to work with all firing and control mode removing all application risks due to the control type selection.
this solution gives many advantages

- The thyristor units are standard and easy to be found every where

An external port is available to connect your normally used PLC
One ethernet port is available on 8 " touch panels
The human interface is friendly and just feeling few data of thermic
project is possible to achive the final configuration
Two different modes to drive SI-C:
-Burst firing with automatic adjustment of power limit Phase angle with transfer from voltage to Power control mode

FEATURES

- Automatic configuration and tuning of the thyristor unit
- Automatic tuning of power control mode $\mathrm{V} \times 1$
- Message on when to change the elements because are at the end of their life

Automatic switch from voltage to VXI control mode when the element temperature is the correct one
Automatic tuning procedure of heather break alarm to diagnostic partial or total load failure Automatic tuning procedure of heather break alarm to
Diagnostic of fuse failure and thyyistor in short circuit

- Diagnostic of fuse failure and thyristor in short circuit
- Recent and historical curve of following process variable

Recent and historical Curve
Load voltage

- Load current
- Power to the load

Resistance value curve with element new
Time elapsed from start to actual resistance value
All in line with SANDVIK specifications for a long element life.
These touch panel is available with different features

- Model $5^{\prime \prime}$ in black and white
- Model $5^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ in colour

Below Thyristor units can be connected:
REVO CL to drive 1 phase unit SI-C elements or 3 Phase open delta or star with neutral - MULTIDRIVE or 3000 E 3PH to drive 3 phase loads in delta or star connection.

Kanthal super touch panel

Kanthal Super increase resistivity sharply with temperature.
The graph on below show that at ambient temperature the resistance value is very low and increase its value up to 10 times.
To don't oversize in current the Thyristor unit it's necessary to limit the current to the load reducing the voltage with phase angle firing and current limit.
When the resistance value reach a setted value are possible two types of working method that can be selected from HMI:

Phase angle plus current limit all the time long
Phase angle plus current limit when the resistance is cold and transfering to delayed
Triggering if load is coupled with transformer

If the Kanthal super are coupled directly to the main voltage supply the unit start in phase angle plus current limit when the resistance is hot transfer automatically to burst firing. This application is typical for cold resistances and CD Automation has developed its own software to drive these types of loads. The size of the HMI available are $5^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$.

FEATURES

- Automatic configuration and tuning of the thyristor unit - Automatic tuning of current control mode I or 1^{1} selectable Automatic tuning of current limit
Automatic transfer from phase angle to delay triggering if the load is coupled with a transformer
Automatic transfer from phase angle to burst firing with element coupled directly to line supply voltage Automatic tuning procedure of heather break alarm o diagnostic partial or total load failure
Diagnostic of fuse failure and thyristor in short circuit Recent and historical curve of following process variable Power density W/Cm2
Load voltage
Load current
Power to the load
Resistance value curve
All in line with SANDVIK specifications
for a long element life.
Real time clock for furnace maintenance.

benefits

Phase Angle used just to reach the working temperature of elements with reduction of harmonics High power factor with furnace working in Burst Firing or delayed triggering
The thyristor units are standard and easy to be found every where
An external port on HMI is available to connect your normally used PLC
One ethernet port is also available on touch panel $=>8^{\prime \prime}$
The human interface is friendly and just inserting few data of thermic project is possible to achive the features listed above.

The Thyristor Unit suitable to drive these type of load are:
REVO CL to drive 1 phase unit or 3 phase open delta or star with neutral
MULTIDRIVE CD3000E 3PH to drive 3 phase loads in delta or star connection

Complex heating elements

TRANSFORMER

REVO CL has been designed to drive single phase Transformers.
CD3000E 3PH or MULTIDRIVE 3PH are suitable to drive
3 Phase transformers.

All above Thyristor units work in Phase Angle, or in Delayed Triggering if transformer is coupled with normal resistance.

No need to worry which firing type to order, you can select phase angle or delayed triggering directly from the front keypad removing any application risks and giving you piece of mind.

REVO PC \& MULTIDRIVE

MULTIDRIVE 2PH SYNCHRONIZATION THROUG SYNC INPUT

Glass industry

This is a cabinet to control the Bath Furnace in a Float glass Plant. CD Automation specialises in this type of application, supplying the complete cabinet package including the Thyristor units.
With its own technical department, CD Automation can study the process \& system, produce the hardware \& software, fully commission the start up process and provide a first class service during the Float Life.
Typical systems can have between 30 and 35 zones, each one having a power range from 100 to 150 kW .

CD Automation product normally used is MULTIDRIVE 3PH.
An example of a control Zone is shown below.
In addition CD Automation can offer REVO PC
This powerful unit with its unique algorithm will minimize energy cost
by controlling synchronisation and power limit of each zone
CD Automation can also supply product and specialist know how for the following applications in the Glass Industry.
Boosting power control
Tin furnace power control
Power control of continuous annealing furnace

\qquad
TIPICAL LOOP FOR GLASS INDUSTRY WITH ETHERNET MODBUS/TCP

Glass tempering furnaces

CD Automation has acquired experience in this type of application where there are up to 60 zones and where a sophisticate control of the power is necessary to don't create glass molecolar tensions.

Following feature are normally used:

- Power set point via communication

Power feed back to compensate voltage fluctuation

- Very fast Burst Firing to increase the thyristor and resistance life

In applications like oscillating and continuous furnaces the power involved it's a lot and is necessary to use the power load management using REVO PC that gives following advantages:

- Power picks elemination with istantaneous values close to average value

Power factor close to one due to zero crossing firing
REVO PC keeps your istantaneous power within the limit of your electricity supply contract
Calculation of instant current and RMS voltage current and power
Calculation of resistance with heather break alarm for partial or total load failure and thyristor in short circuit

UV lamps

With REVO CL the power is under control

ELECTRONIC CONTROL

CD Automation has developed its own system based on HML. Where inside there is a standard software to drive UV lamps. REVO CL thyristor unit is in communication with the touch panel.

The electronic controll for UV Lamps is becoming every day more and more used for application in printing machines and dry painting on wood.
The feature Voltage/Current is a function depending on type of gas and on the working temperature.
 of lower power consumption and thus a lower CO ammission.

REVO CL is able to reduce the power at stand by value when the material is not there and to increase it when the production start again.
This unit have a very sophisticate alghoritm able to switch on the lamp at constant current and to avoid the switch off while it is working.
When a transformer is provided to switch on the lamp the REVO CL is designed to drive it at constant current. These transformers are special designed and with a secondary voltage of KV.
After the starting procedure that can take many seconds an input signal set the lamp emission.
Via communication or via an analog input is possible to adjust it from 30% to 100%.
These percentage depends on lamp type.
REVO CL is a digital thyristor unit thus the customer avoid wire many cables.
many cables.
If customer want to implement its own software in the Panel CD Automation can do it.

Plastic machinary application

CD Automation is the market leader for this type of application and has thyristor product specifically designed for this market. CD Automation has extensive knowledge and experience in plastic machinery systems. CD REVO up to 40A has been designed for this application.

What REVO offers?

Modularity of its components
Configurability that allows increased product performances
REVO's "value add" capable of saving 50\% of labour and space. innovation based on knowledge of process.
International assistance from around the world via trained
distributors and joint venture multi-national companies. REVO is a system not a simple product
Includes all key components of a typical control zone. REVO TC is an integrated product including, fuse \& fuse holder, solid state relay, current transformer and temperature control, all in one.

Tipical plastic machinary architecture

Soft Starter family STB - STO - STE

Control types available

VOLTAGE RAMP (torque ramp)

Soft Starter start from a setted initial voltage, and ramp up to the nominal one in a setted time.
In addiction on all family products is possible to start high friction load with kickstart that gives to the motor for $100 \div 300$ msec 80% of full voltage, without current limit.
When is started, the motor reach the full speed and remain there, up to when stopped and it can reach zero speed by inerthia or via setted ramp down.

As an option is also available the dynamic braking

CURRENT RAMP

Soft starter start from a setted initial current and ramp up to the nominal value in a setted time. This type of control is available on STO+STE family

CURRENT LIMIT

This parameter sets the current at which to start.
This value depend on the application and must not exceed
the soft starter sizing (see on next two pages).

INITIAL CURRENT LIMIT
This parameter sets the initial start current for the current ramp mode.

MOTOR PROTECTION

Inside STO and STE soft starter families, has been implemented electronic motor thermal protection.
The curves are rapresented on right side, and basically one is for normal sevice, and the other one for severe service.
This is an overload relay.

RAMP PLUS CURRENT LIMIT

KICKSTART (BOOSTER)

MOTOR THERMAL PROTECTION

Soft Starter Model

FUNCTIONALTY

(1) Protection attive during ramp up

Main features

	SOFt Starters main features	STB	sto	STE
GEneral	Curentrange	6:200A	>32:200A	>32:200A
	3 wie motor comnection	-	-	-
	Internal bypass St. from 6 to 200A	-	-	-
MAIN SUPPLY Voltace	Supply volage 3x200V; 3 S440V Max (+10 :-15\%) ac	-	-	-
	Supply volage 3x200V; 3x575V Max ($+10:-15 \%$) (ust for $>32 \mathrm{~A}$)	-	-	-
	Auxiliar voltage 110-240V (+10 : - 15\%) ac (just for $>32 \mathrm{~A}$)	-	-	-
	Auxiliar voltage 380-440V (+10 :-15\%) ac (just for $>32 \mathrm{~A}$)	-	-	-
	Auxiliay voltage $24 \mathrm{Vac/dc}(+20:-20 \%$) ac (just for $>32 \mathrm{~A}$)	-	-	-
	Voltage frequency 45 to 66 Hz	-	-	-
dictal InPuts	Stat/stop optiosolated input +24 V d cs satat with Dip 4 off (≤ 324)	-		
	Start with power up with Dip 4 on (S32A)	-		
	Stat optoisolated input +24 V dc	-		
	Stop optoisolated input +24 V dc	-		
	Configurable digital input 1		-	\bullet
	Configurabl digital input 2		-	-
Control	Ramp up 0 to 15 sec adiustable	-	-	-
	Ramp down 0 to 15 sec adiustable	-	-	-
	Initial torque 0 to 80%	-	-	-
	Current linit 3 22A		-	-
	Motor fill load current 332 A		-	-
	Overload relay $>32 \mathrm{~A}$		-	-
	Digital in/out $>32 \mathrm{~A}$		-	-
	Phase sequence enable $>32 \mathrm{~A}$		-	-
	Exceded max start time $>32 \mathrm{~A}$		-	-
Led status alarm nndication	Run green led slow blinking ready to start	-	-	
	Run green led fast blinking ramp active	-	-	
	Run green led on end of amp	-	-	
	Alam reed led off no alam	-	-	
	PW green on power supply vailable	-	-	
	PW green on power supply not vavilble	-	-	
kEYPAD	Rotary swith	-	-	
	Colour touch panel with alarm message ind diferent language			-
	Read out of volage, current, power etc			-
	Logging and trend			-
communcation	Modus RTU Std		-	-
	USB device Std		-	-
	Modus TCP (option)		-	-
	Profius DP (option)		-	-
	Profinet (option)		-	-
	Devicenet (option)		-	-
environmental	Protection 1P20	-	-	-
	Current sizing as in TAB for $40^{\circ} \mathrm{C}$ for temperature over see derating	-	-	-
	Operating temperature -10 to $60^{\circ} \mathrm{C} \mathrm{max}$	-	-	-
	Humidity 5\% to 95\% reative humidity	-	-	-
	Conformal coaing (option)	-	-	-
RELAY OUTPUT	2 Relay output tree volage contat (500 mA , 125 Vac)	$\bullet(1)$	-	-

[^5]
Soft Starter Selection

Start from application table on the right
Example: Agitator 50A the suggested start current is 4 times FLC (full load current 50A)

Select model from table at the bottom page

Go on column HEAVY (4) and nominal current of your motor must be equal or less than the value (In our example is 55A)
If selected model is STB your soft starter is STB075
If you want to receive Soft Starter already configured follow the code below:

SERVICE		LIGHT	MEDIUM	HEAVY	SEVERE
Start Curent (Mustiple of FLC*)		3	3,5	4	4,5
		AC53b 3,0 - -1:350<1000m	AC53b 3,5-15:345<1000m	AC53b 4,0 -20:340<1000m	AC53b $4,5-30 \cdot 340<1000 \mathrm{~m}$
model		Rating at $40^{\circ} \mathrm{C}$ for $3 \times \mathrm{LC}$	Rating at $40^{\circ} \mathrm{C} \mathrm{Amps}$	Rating at $40^{\circ} \mathrm{C} \mathrm{Amps}$	Rating at $40^{\circ} \mathrm{C} \mathrm{Amps}$
STB	006	6 A	5 A	4 A	3 A
STB	012	${ }^{12 A}$	11 A	9 A	7 A
STB	022	22A	208	17A	13 A
STB	032	32A	29A	25A	19A
STB-STO - STE	043	43 A	40 A	354	29A
STB-STO - STE	050	50A	44 A	38 A	30A
STB-STO - STE	060	60A	55A	48A	37 A
		AC53b $3,0.6 \cdot 5: 590<1000 \mathrm{~m}$	AC53b 3,5-15:585<1000m	AC53b 4,0-20:580<1000m	AC53b 4,5-30:570<1000m
STB - STo - STE	075	75A	65 A	55A	47A
STB - STo - STE	100	100 A	88A	75A	61 A
STB- STO- STE	140	140 A	123 A	107 A	90A
STB - STo - STE	170	170 A	$145 A$	122 A	97 A
STB - STO - STE	200	200 A	190 A	160 A	135A

	APPLCATION	3 ln	3,5 In	4 ln	4,5 in
AGTITOOR				-	
ATomIzer				-	
BANDSAN					-
Botte washer		-			
$\frac{\text { Centrfucal pump }}{\text { Centriuce }}$			-		
					-
CHIPPER					\bullet
Cricular saw			-		
Converor belt					-
Converor Scew				-	
CRANE TRANSATOR				-	
CRUSHER CONE			-		
CRUSHERJAW					-
CRUSHER ROTAAY			-		
CruSHer verticl IMPACT			-		
DEBarker			-		
					-
${ }^{\text {DUST COLLECTOR }}$			-		
			-		
Elevator		-			
FAN AXAL CIAMPED			-		
fan axal unclamped					-
FAN CENTRRUCALL CIAMPED			-		
fanc	fuUAL UNDAMPED				-
FAN HICH Pressure					-
CRNDER			-		
HYDRAULIC POWER PACK			-		
LOADEE PISTON COMPRESSOR					-
MLL					\bullet
MLL HAMMER					\bullet
MLL ROLEER					-
MXER					-
${ }^{\text {MONORALS }}$				-	
					-
PLANER			-		
Postive iIsPICEMENT PUMP				-	
PRESS			-		
PuMP		-			
RePULIPER					-
Roller convervor			-		
$\frac{\text { Rotary Talle }}{\text { SANDER }}$				-	
				-	
SCREN COMPRESSOR				-	
Screw converor				-	
SEPARATOR					-
Stredote					-
$\frac{\text { SILCER }}{\text { SUURY PUMP }}$		-			
					-
TUMBER				-	
UNLOADED PSTON COMPRESSORHYORAULIC PUMP				-	
		Hroralic PuMP	-		
	HEAVY		SEVERE		
	4		4,5		
1000 m	AC53b 4,0 -20:340<1000m		AC53b 4,	30:340<	000m
mps	Rating at $40^{\circ} \mathrm{C} \mathrm{Amps}$		Rating at $40^{\circ} \mathrm{C} \mathrm{Amps}$		
	4 A		3 A		
	9 A		7 A		
	17 A		13A		
	25A		19A		
	35A		29A		
	38A		30A		
	48 A			37A	
1000 m	AC53b 4,0 -20:580<1000m		AC53b 4, -30:570<1000m		
${ }_{75} 5$			47 A		
			61 A		
107 A			90A		
122 A			97A		
160 A			135 A		

STB Soft Starter

SOFT STARTER OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE AC MOTOR FROM 6A TO 200A NOMINAL WITH INTERNAL BYPASS CONTACTOR．

Technical Specification

STB family has 3 adjustaments：
Initial start voltage
Start ramp time
Kickstart 100 to 300 msec can be configured by DIP switch
－DIN rail or fixing hole mounting：from 6 to 32A

STB 006：012		sTB 022：032		STB 048：100		डтв 140：200	
DIMENSIONS		DIMENSIONS		DIMENSIONS		DIMENSIONS	
Wide	30 mm	Wide	52 mm	Wide	93 mm	Wide	186 mm
Deep	130 mm	Deep	130 mm	Deep	144 mm	Deep	144 mm
Height	122 mm	Height	122 mm	Height	253 mm	Height	253 mm

$$
\text { - Fixing hole mounting from } 42 \text { to 200A }
$$

sIZE SS3

SIZE SS4

SOFT STARTERS OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE AC MOTOR FROM 48A TO 200A NOMINAL WITH INTERNAL BYPASS CONTACTOR.

Technical Specification

- STO family rotary adjustaments on front unit:
- Initial start voltage
- Start ramp time
- Stop ramp time

Kickstart 100, 200 or 300 msec can be configured by DIP switch - Internal electronic overload relay

- Hole mounting from 42 to 200A fixing

Modbus RTU standard

- USB device standard
- Modbus TCP option
- Profibus DP option
- Profinet option
- Devicenet option

OFF $=$ No overlod protection
Not: Tip class must be sett Note: Trip class must

\qquad

STO Control Panel

ST0 048 : STolou		sto 140: STO200	
DIMENSIONS		DIMENSIONS	
Wide	93 mm	Wide	186 mm
Deep	144 mm	Deep	144 mm
Height	253 mm	Height	253 mm

STE Soft Starter

SOFT STARTERS OF THIS FAMILY ARE DESIGNED TO CONTROL THREE PHASE MOTOR FROM 48A TO 200A

Technical Specification

Color touch paneltor easy human interface
Message and information, front display panel in different languages Voltage Current and Power available
-Trend of electrical variable
Two configurable digital input

- Two configurable digital Output
-Most popular FieldBus*:
\#hoolbus ModBus RTU standard
USB USB port standard

Mosturue to ModBus TCP available as option

Devicoilot Devicenet available as option
EthercaT* Ethercat available as option

EtheriotitiP Ethernet IP available as option
Powereilink Powerlink available as option

FULL-COLOR MONITOR
EASY TO USE TOUCHSCREEN

TE 048 : STE100

STE 140 : TTE200

DIMENSIONS	
Wide	186 mm
Deep	144 mm
Height	253 mm

[^0]:

[^1]: Note (1) Use 1 Off Current Sensor for each 8 Channels on Revo PC Example: System with 24 zone 1 phase.
 To be able to equilibrate the current on phase L1, L2 and L3 I's necessary to connect 8 zone on each phase coupled with one Revo PC synchronized on same voltage supply. In total we need: 3 Off Revo PC $08+3$ Off Current sensor +24 Off Revo S IPH with Random Firing.

 Note (2) Example System with 6 three phase loads controlled on 2 Phase.1 Off Revo PC $28+3$ Off Current sensor +12 Off Revo S 1PH with Zero Crossing Firing. With Revo PC the Revo S 2PH has to be formed by 2 Off Revo S IPH

 Note (3) Example System with 6 three phase loads controlled on 3 Phase. 1 Off Revo PC $38+3$ Off Current sensor +18 off Revo S IPH with Zero Crossing Fring. Whin Revo PC architecture the Revo S 3 PH has to be formed by 3 Off Revo S IPH
 For more details see ask for Application Note on Revo PC

[^2]: S14 H $520 \times$ W $262 \times$ D 270

[^3]: (100 1

[^4]: （2）

[^5]: 6

